Plant structural and storage glucans trigger distinct transcriptional responses that modulate the motility of Xanthomonas pathogens

Author:

Bonfim Isabela Mendes12,Paixão Douglas Alvarez1,Andrade Maxuel de Oliveira1,Junior Joaquim Martins1,Persinoti Gabriela Felix1,Giuseppe Priscila Oliveira de1ORCID,Murakami Mário Tyago1ORCID

Affiliation:

1. Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM) , São Paulo, Brazil

2. Graduate Program in Molecular and Morphofunctional Biology, Institute of Biology, University of Campinas , São Paulo, Brazil

Abstract

ABSTRACT Some phytopathogens are outfitted with a broad and diverse repertoire of enzymatic systems that enable the breakdown and utilization of host polysaccharides as a source of carbon, energy, and stimuli. However, the functional assignment of these enzymatic systems and the influence of their products on modulating pathogen behavior during host colonization are yet poorly comprehended. In this study, we performed RNA-seq analyses to provide a comprehensive, genome-wide view of the transcriptional response of the model phytopathogen Xanthomonas citri pv. citri 306 (known as X. citri 306) to cellobiose, a component of structural β-1,4-glucans (majorly cellulose), and storage α-glucans, seeking to better understand how they are assimilated and the impacts of their sensing on bacterial behavior and physiology. Structural β-1,4-glucans and storage α-glucans (starch) are spatially discretized in the plant cell, therefore representing spatiotemporal references for the bacterium during host colonization. Combining transcriptional and genome mining analyses with gene knockout and cell motility assays, we show that X. citri 306 harbors molecular systems for the breakdown and assimilation of these carbohydrates, revealing that cellobiose upregulates genes related to flagellum assembly and type IV pili, inducing a higher motility state. In contrast, starch suppresses genes related to chemotaxis, flagellum assembly, and biofilm dispersion, decreasing motility. Taken together, these results unravel that, besides using structural β-glucans and storage α-glucans as sources of carbon and energy, Xanthomonas bacteria also sense them, adapting their metabolism and controlling transitions between higher and lower motility states for successful host colonization. IMPORTANCE Pathogenic Xanthomonas bacteria can affect a variety of economically relevant crops causing losses in productivity, limiting commercialization and requiring phytosanitary measures. These plant pathogens exhibit high level of host and tissue specificity through multiple molecular strategies including several secretion systems, effector proteins, and a broad repertoire of carbohydrate-active enzymes (CAZymes). Many of these CAZymes act on the plant cell wall and storage carbohydrates, such as cellulose and starch, releasing products used as nutrients and modulators of transcriptional responses to support host colonization by mechanisms yet poorly understood. Here, we reveal that structural and storage β-glucans from the plant cell function as spatial markers, providing distinct chemical stimuli that modulate the transition between higher and lower motility states in Xanthomonas citri , a key virulence trait for many bacterial pathogens.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3