Development and evaluation of a real-time quantitative PCR for the detection of equine infectious anemia virus

Author:

Li Shuaijie1,Guo Kui1ORCID,Wang Xuefeng1,Lin Yuezhi1,Wang Jinhui1,Wang Yaoxin1,Du Cheng1ORCID,Hu Zhe12,Wang Xiaojun12ORCID

Affiliation:

1. State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences , Harbin, China

2. WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences , Harbin, China

Abstract

ABSTRACT Equine infectious anemia (EIA) has a worldwide distribution and causes severe economic losses to the equine industry. The EIA virus (EIAV) genome sequences from different countries are highly diverse, which poses a great challenge for pathogen identification with PCR. Phylogenetic analysis showed that although gag is the most conserved structural gene, it still has great genome variability. Currently, most existing PCR methods are designed based on the gag gene sequence and therefore do not cover all the viral strains, especially Asian EIAV strains. In this study, we developed a tat-gag-based real-time quantitative PCR (TG-qPCR) for the detection of EIAV by targeting the fragment between the tat and gag genes, which was relatively conserved in all the known EIAV strains. The performance of the TG-qPCR was evaluated against that of the standard qPCR (recommended by WOAH) by testing viral RNA extracted from viral supernatants of EIAV DLV2-6 and EIAV UK3 , proviral DNA from peripheral blood mononuclear cells of artificially immunized horses, and virus nucleic acid from EIAV positive serum samples. The TG-qPCR assay had high specificity, sensitivity, and reproducibility. The detection limit of the TG-qPCR assay was 1 copy/reaction for both viral RNA and proviral DNA based on the Poisson distribution. Compared to the qPCR, the TG-qPCR has better inclusivity and can detect not only Asian EIAV strains but also almost all the representative EIAV strains from other continents. The above results show that the TG-qPCR assay could serve as an effective tool for the early diagnosis of clinical EIA disease. IMPORTANCE Equine infectious anemia (EIA) has a worldwide distribution and causes significant losses to the equine industry worldwide. A reliable detection method is necessary to control the transmission of EIA virus (EIAV). Currently, most of the available real-time PCR assays, including the qPCR of recommended by WOAH, are developed according to the sequences of European or American EIAV strains; however, the primers and probe sequences have low homology with Asian EIAV strains. To the best of our knowledge, no qPCR method capable of the well detection of Asian EIAV strains, especially Chinese EIAV strains, has been published to date. The development of a sensitive, specific, and rapid qPCR assay for the detection of the EIAV strains is therefore of great importance.

Funder

MOST | National Key Research and Development Program of China

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3