The Alternaria alternata StuA transcription factor interacting with the pH-responsive regulator PacC for the biosynthesis of host-selective toxin and virulence in citrus

Author:

Chen Yanan12ORCID,Cao Yingzi1,Jiao Chen1,Sun Xuepeng2,Gai Yunpeng1ORCID,Zhu Zengrong13,Li Hongye1ORCID

Affiliation:

1. The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University , Hangzhou, China

2. Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture & Forestry University , Hangzhou, China

3. Hainan Institute, Zhejiang University , Sanya, China

Abstract

ABSTRACT The tangerine pathotype of Alternaria alternata produces a host-selective toxin termed Alternaria citri toxin (ACT). The molecular mechanisms underlying the global regulation and biosynthesis of ACT remain unknown. In the present study, the function of an APSES transcription factor StuA was investigated. StuA was shown to be required for ACT biosynthesis and fungal virulence. StuA was found, for the first time, to physically interact with a pH-responsive transcription regulator PacC using yeast two-hybrid, bimolecular fluorescence complementation, and GST pull-down assays. Functional analyses revealed that StuA and PacC regulate the expression of genes involved in toxin biosynthesis and virulence. Mutation of stuA via targeted gene deletion or silencing pacC yielded fungal strains that decreased the expression of seven toxin biosynthetic genes ( ACCT ) and toxin production. EMSA analyses revealed that PacC could bind to the promoters of ACTT6 encoding an enoyl-CoA hydratase and ACTTR encoding an ACT pathway-specific transcription factor. Site-directed mutagenesis of five potential protein kinase A (PKA) phosphorylation sites in StuA revealed that none of the sites was involved in ACT production, indicating that the function of StuA in the regulation of ACT gene expression is not dependent on phosphorylation. Overall, our results confirmed that PacC is one of the key regulators interacting with StuA for the biosynthesis of ACT. Environmental pH may play a decisive role during A. alternata pathogenesis. Our results also revealed a previously unrecognized (StuA-PacC)→ACTTR module for the biosynthesis of ACT in A. alternata . IMPORTANCE In this study, we used Alternaria alternata as a biological model to report the role of StuA in phytopathogenic fungi. Our findings indicated that StuA is required for Alternaria citri toxin (ACT) biosynthesis and fungal virulence. In addition, StuA physically interacts with PacC. Disruption of stuA or pacC led to decreased expression of seven toxin biosynthetic genes (ACCT) and toxin production. PacC could recognize and bind to the promoter regions of ACTT6 and ACTTR . Our results revealed a previously unrecognized (StuA-PacC)→ACTTR module for the biosynthesis of ACT in A. alternata , which also provides a framework for the study of StuA in other fungi.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

MOA | Earmarked Fund for China Agriculture Research System

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3