Noncanonical-NF-κB activation and DDX3 inhibition reduces the HIV-1 reservoir by elimination of latently infected cells ex-vivo

Author:

Jansen Jade12ORCID,Kroeze Stefanie12,Man Shirley12,Andreini Matteo3,Bakker Jan-Willem3,Zamperini Claudio3,Tarditi Alessia3,Kootstra Neeltje A.12ORCID,Geijtenbeek Teunis B. H.12ORCID

Affiliation:

1. Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam , Amsterdam, the Netherlands

2. Amsterdam Institute for Infection and Immunity , Amsterdam, the Netherlands

3. First Health Pharmaceuticals B.V , Amsterdam, the Netherlands

Abstract

ABSTRACT Latency reversal and subsequent elimination of the human immunodeficiency virus-1 (HIV-1) reservoir using a combination of compounds with different mechanisms of action are considered a promising tool for HIV-1 cure. Here, we analyzed HIV-1 reservoir reduction by targeting the two host factors; inhibitor of apoptosis proteins (IAPs) and DEAD-box polypeptide 3 (DDX3) using a SMAC mimetic (SMACm) and DDX3 inhibitor (DDX3i), respectively. We observed that SMACm efficiently reactivated HIV-1 in a latency Jurkat model, which was further enhanced by DDX3 inhibition. Strikingly, this compound combination strongly decreased the proportion of latently as well as transcriptionally active infected cells in a T cell line model with a dual-reporter virus. To determine the efficacy of compounds to eradicate the HIV-1 reservoir in people living with HIV (PWH), a novel ex vivo HIV-1 reservoir reduction assay (HIVRRA) was developed. DDX3i and SMACm alone reduced the HIV-1 reservoir in peripheral blood mononuclear cells (PBMCs) from the majority of PWH, whereas notably, the SMACm/DDX3i combination reduced the HIV-1 reservoir even further with 53%–90% in all PWH analyzed, while uninfected bystander cells were not affected. Our data highlight that IAPs as well as factors involved in HIV-1 replication like DDX3 are excellent targets for HIV-1 cure strategies. We show for the first time that the combination of SMACm and DDX3i reverses viral latency and specifically eliminates the HIV-1-infected cells in vitro and ex vivo . IMPORTANCE HIV-1 continues to be a major global health challenge. Current HIV-1 treatments are effective but need lifelong adherence. An HIV-1 cure should eliminate the latent viral reservoir that persists in people living with HIV-1. Different methods have been investigated that focus on reactivation and subsequent elimination of the HIV-1 reservoir, and it is becoming clear that a combination of compounds with different mechanisms of actions might be more effective. Here, we target two host factors, inhibitor of apoptosis proteins that control apoptosis and the DEAD-box helicase DDX3, facilitating HIV mRNA transport/translation. We show that targeting of these host factors with SMAC mimetics and DDX3 inhibitors induce reversal of viral latency and eliminate HIV-1-infected cells in vitro and ex vivo .

Funder

HealthHolland/Aidsfonds

HealthHolland/AMC

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3