Deciphering the molecular components of the quorum sensing system in the fungus Ophiostoma piceae

Author:

Santos-Pascual Rodrigo1,Campoy Iván1,Sanz Mata David1,Martínez María Jesús1,Prieto Alicia1,Barriuso Jorge1ORCID

Affiliation:

1. Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC) , Madrid, Spain

Abstract

ABSTRACT Quorum sensing (QS) is a complex cell-cell communication mechanism that coordinates population-level behaviors in microbes. In eukaryotes, this phenomenon has been extensively described in the dimorphic yeast Candida albicans as its main QS molecule, the sesquiterpene alcohol farnesol, is responsible for various phenotypic (i.e., inhibition of yeast-to-hyphae transition, biofilm formation, and, hence, pathogenesis) and metabolic (i.e., induction of oxidative stress and apoptosis) changes. Ophiostoma piceae CECT 20416 is a dimorphic saprotrophic ascomycete with biotechnological interest that also produces farnesol as QS molecule, but in this case, the alcohol promotes the morphological transition to the mycelial form, biofilm formation, enzyme secretion, and melanin production. Here, we characterized the physiological response of Ophiostoma piceae to farnesol, the molecular components of the QS system of this fungus have been investigated using a “multiomics” approach that involved genomic, transcriptomic, and proteomic analyses. Some genes identified in this work are proposed as key factors in farnesol transport and signaling. We have also cataloged the genes undergoing major transcriptional changes triggered by the presence of the autoinducer, such as cell-wall remodeling, reactive oxygen species (ROS) protection, and melanin biosynthesis, using self-organizing maps. This analysis could be useful for applications in the forestry industry, for enzymes production, and for the valorization of residues. Furthermore, it might as well help to investigate the QS mechanisms of clinically relevant fungi phylogenetically related to Ophiostoma . IMPORTANCE This manuscript presents a comprehensive study on the molecular mechanisms triggered by the quorum sensing (QS) molecule farnesol in the biotechnologically relevant fungus Ophiostoma piceae . We present for the first time, using a multiomics approach, an in-depth analysis of the QS response in a saprotroph fungus, detailing the molecular components involved in the response and their possible mechanisms of action. We think that these results are particularly relevant in the knowledge of the functioning of the QS in eukaryotes, as well as for the exploitation of these mechanisms.

Funder

Ministerio de Ciencia e Innovación

MEC | Consejo Superior de Investigaciones Científicas

Joint Genome Institute

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3