Exploring antimicrobial interactions between metal ions and quaternary ammonium compounds toward synergistic metallo-antimicrobial formulations

Author:

Lekhan Andrii1,Turner Raymond J.1ORCID

Affiliation:

1. Department of Biological Sciences, University of Calgary, Calgary, Canada

Abstract

ABSTRACT Multi-target antimicrobial agents are considered a viable alternative to target-specific antibiotics, resistance to which emerged as a global threat. Used centuries before the discovery of conventional antibiotics, metal(loid)-based antimicrobials (MBAs), which target multiple biomolecules within the bacterial cell, are regaining research interest. However, there is a significant limiting factor—the balance between cost and efficiency. In this article, we utilize a checkerboard assay approach to explore antimicrobial combinations of MBAs with commonly used quaternary ammonium compound (QAC) antiseptics in order to discover novel combinations with more pronounced antimicrobial properties than would be expected from a simple sum of antimicrobial effects of initial components. This phenomenon, called synergy, was herein demonstrated for several mixtures of Al3+with cetyltrimethylammonium bromide (CTAB) and TeO32- with benzalkonium chloride (BAC) and didecyldimethylammonium bromide (DDAB) against planktonic and biofilm growth of Pseudomonas aeruginosa ATCC27853. Biofilm growth of Escherichia coli ATCC25922 was synergistically inhibited by the Cu2 +and benzalkonium chloride (BAC) mixture. Multiple additive mixtures were identified for both organisms. The current study observed unexpected species and growth state specificities for the synergistic combinations. The benefit of synergistic mixtures will be captured in economy/efficiency optimization for antimicrobial applications in which MBAs and QACs are presently used. IMPORTANCE We are entering the antimicrobial resistance era (AMR), where resistance to antibiotics is becoming more and more prevalent. In order to address this issue, various approaches are being explored. In this article, we explore for synergy between two very different antimicrobials, the antiseptic class of quaternary ammonium compounds and antimicrobial metals. These two antimicrobials have very different actions. Considering a OneHealth approach to the problem, finding synergistic mixtures allows for greater efficacy at lower concentrations, which would also address antimicrobial pollution issues.

Funder

Canadian Government | Natural Sciences and Engineering Research Council of Canada

Publisher

American Society for Microbiology

Reference46 articles.

1. The antibiotic resistance crisis: part 1: causes and threats;Ventola CL;P T,2015

2. Tackling antibiotic resistance

3. O’Neil J. Review on antimicrobial resistance antimicrobial resistance: tackling a crisis for the healthand wealth of nations. Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for %20the%20health%20and%20wealth%20of%20nations_1.pdf. Retrieved 7 Dec 2023.

4. Antibiotic resistance—the need for global solutions

5. Combination therapies for combating antimicrobial resistance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3