Genome-wide translational response of Candida albicans to fluconazole treatment

Author:

Choudhary Saket1,Mundodi Vasanthakrishna2,Smith Andrew D.1,Kadosh David2ORCID

Affiliation:

1. Quantitative and Computational Biology, University of Southern California , Los Angeles, California, USA

2. Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio , San Antonio, Texas, USA

Abstract

ABSTRACT Azoles are commonly used for the treatment of fungal infections, and the ability of human fungal pathogens to rapidly respond to azole treatment is critical for the development of antifungal resistance. While the roles of genetic mutations, chromosomal rearrangements, and transcriptional mechanisms in azole resistance have been well-characterized, very little is known about post-transcriptional and translational mechanisms that drive this process. In addition, most previous genome-wide studies have focused on transcriptional responses to azole treatment and likely serve as inaccurate proxies for changes in protein expression due to extensive post-transcriptional and translational regulation. In this study, we use ribosome profiling to provide the first picture of the global translational response of a major human fungal pathogen, Candida albicans , to treatment with fluconazole (Flu), one of the most widely used azole drugs. We identify sets of genes showing significantly altered translational efficiency, including genes associated with a variety of biological processes such as the cell cycle, DNA repair, cell wall/cell membrane biosynthesis, transport, signaling, DNA- and RNA-binding activities, and protein synthesis. We observe both similarities and differences among the most highly represented gene categories (as defined by gene ontology) that are regulated by fluconazole at the translational vs transcriptional levels. Importantly, however, very few genes that are translationally regulated by fluconazole are also controlled transcriptionally under this condition. Our findings suggest that C. albicans possesses distinct translational mechanisms that are important for the response to antifungal treatment, which could eventually be targeted by novel antifungal therapies. IMPORTANCE Azoles are one of the most commonly used drug classes to treat human fungal pathogens. While point mutations, chromosomal rearrangements, and transcriptional mechanisms that drive azole resistance have been well-characterized, we know very little about the role of translational mechanisms. In this study, we determined the global translational profile of genes that are expressed in the major human fungal pathogen Candida albicans in response to fluconazole, one of the most widely used azole drugs. We find both similarities and differences among the most highly represented categories of genes regulated by fluconazole at the transcriptional and translational levels. Interestingly, however, many of the specific genes that are regulated by fluconazole at the translational level do not appear to be controlled by transcriptional mechanisms under this condition. Our results suggest that distinct C. albicans translational mechanisms control the response to antifungals and could eventually be targeted in the development of new therapies.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3