Identification of Burkholderia cepacia strains that express a Burkholderia pseudomallei -like capsular polysaccharide

Author:

Burtnick Mary N.12ORCID,Dance David A. B.345ORCID,Vongsouvath Manivanh3,Newton Paul N.345,Dittrich Sabine346,Sendouangphachanh Amphone3,Woods Kate3,Davong Viengmon3,Kenna Dervla T. D.7,Saiprom Natnaree2,Sengyee Sineenart12,Hantrakun Viriya8,Wuthiekanun Vanaporn8,Limmathurotsakul Direk489,Chantratita Narisara28ORCID,Brett Paul J.12ORCID

Affiliation:

1. Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA

2. Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

3. Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos

4. Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom

5. Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom

6. Deggendorf Institut of Technology, European Campus Rottal Inn, Pfarrkirchen, Germany

7. Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health Microbiology Division, Specialised Microbiology & Laboratories Directorate, UK Health Security Agency, London, United Kingdom

8. Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand

9. Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

Abstract

ABSTRACT Burkholderia pseudomallei and Burkholderia cepacia are Gram-negative, soil-dwelling bacteria that are found in a wide variety of environmental niches. While B. pseudomallei is the causative agent of melioidosis in humans and animals, members of the B. cepacia complex typically only cause disease in immunocompromised hosts. In this study, we report the identification of B. cepacia strains isolated from either patients or soil in Laos and Thailand that express a B. pseudomallei -like 6-deoxyheptan capsular polysaccharide (CPS). These B. cepacia strains were initially identified based on their positive reactivity in a latex agglutination assay that uses the CPS-specific monoclonal antibody (mAb) 4B11. Mass spectrometry and recA sequencing confirmed the identity of these isolates as B. cepacia (formerly genomovar I). Total carbohydrates extracted from B. cepacia cell pellets reacted with B. pseudomallei CPS-specific mAbs MCA147, 3C5, and 4C4, but did not react with the B. pseudomallei lipopolysaccharide-specific mAb Pp-PS-W. Whole genome sequencing of the B. cepacia isolates revealed the presence of genes demonstrating significant homology to those comprising the B. pseudomallei CPS biosynthetic gene cluster. Collectively, our results provide compelling evidence that B. cepacia strains expressing the same CPS as B. pseudomallei co-exist in the environment alongside B. pseudomallei . Since CPS is a target that is often used for presumptive identification of B. pseudomallei , it is possible that the occurrence of these unique B. cepacia strains may complicate the diagnosis of melioidosis. IMPORTANCE Burkholderia pseudomallei , the etiologic agent of melioidosis, is an important cause of morbidity and mortality in tropical and subtropical regions worldwide. The 6-deoxyheptan capsular polysaccharide (CPS) expressed by this bacterial pathogen is a promising target antigen that is useful for rapidly diagnosing melioidosis. Using assays incorporating CPS-specific monoclonal antibodies, we identified both clinical and environmental isolates of Burkholderia cepacia that express the same CPS antigen as B. pseudomallei . Because of this, it is important that staff working in melioidosis-endemic areas are aware that these strains co-exist in the same niches as B. pseudomallei and do not solely rely on CPS-based assays such as latex-agglutination, AMD Plus Rapid Tests, or immunofluorescence tests for the definitive identification of B. pseudomallei isolates.

Funder

DOD | Defense Threat Reduction Agency

Wellcome Trust

Publisher

American Society for Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3