Klebsiella pneumoniae DedA family proteins have redundant roles in divalent cation homeostasis and resistance to phagocytosis

Author:

Tiwari Vijay1,Sharma Amit2,Braga Reygan3,Garcia Emily1,Appiah Ridhwana4,Fleeman Renee4,Abuaita Basel H.2,Patrauchan Marianna3ORCID,Doerrler William T.1ORCID

Affiliation:

1. Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA

2. Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA

3. Department of Microbiology and Molecular Genetics, College of Arts and Science, Oklahoma State University, Stillwater, Oklahoma, USA

4. Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA

Abstract

ABSTRACT The DedA superfamily is a highly conserved family of membrane proteins. Deletion of Escherichia coli yqjA and yghB , encoding related DedA family proteins, results in sensitivity to elevated temperature, antibiotics, and alkaline pH. The human pathogen Klebsiella pneumoniae possesses genes encoding DedA family proteins with >90% amino acid identity to E. coli YqjA and YghB. We hypothesized that the deletion of K. pneumoniae yqjA and yghB will impact its physiology and may reduce its virulence. The K. pneumoniae Δ yqjA Δ yghB mutant (strain VT101) displayed a growth defect at 42°C and alkaline pH sensitivity, not unlike its E. coli counterpart. However, VT101 retained mostly wild-type resistance to antibiotics. We found VT101 was sensitive to the chelating agent EDTA, the anionic detergent SDS, and agents capable of alkalizing the bacterial cytoplasm such as bicarbonate or chloroquine. We could restore growth at alkaline pH and at elevated temperature by addition of 0.5–2 mM Ca 2+ or Mg 2+ to the culture media. VT101 displayed a slower uptake of calcium, which was dependent upon calcium channel activity. VT201, with similar deletions as VT101 but derived from a virulent K. pneumoniae strain, was highly susceptible to phagocytosis by alveolar macrophages and displayed a defect in the production of capsule. These findings suggest divalent cation homeostasis and virulence are interlinked by common functions of the DedA family. IMPORTANCE Klebsiella pneumoniae is a dangerous human pathogen. The DedA protein family is found in all bacteria and is a membrane transporter often required for virulence and antibiotic resistance. K. pneumoniae possesses homologs of E. coli YqjA and YghB, with 60% amino acid identity and redundant functions, which we have previously shown to be required for tolerance to biocides and alkaline pH. A K. pneumoniae strain lacking yqjA and yghB was found to be sensitive to alkaline pH, elevated temperature, and EDTA/SDS and displayed a defect in calcium uptake. Sensitivity to these conditions was reversed by addition of calcium or magnesium to the growth medium. Introduction of Δ yqjA and Δ yghB mutations into virulent K. pneumoniae resulted in the loss of capsule, increased phagocytosis by macrophages, and a partial loss of virulence. These results show that targeting the Klebsiella DedA family results in impaired divalent cation transport and, in turn, loss of virulence.

Funder

HHS | NIH | OSC | Common Fund

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3