BsR1, a broad-spectrum antibacterial peptide with potential for plant protection

Author:

Song Pei1ORCID,Zhao Li1,Zhu Li1,Sha Gan1,Dong Wubei1ORCID

Affiliation:

1. Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University , Wuhan, China

Abstract

ABSTRACT The urgent need for new antibacterial drugs arises from the emergence of bacterial multidrug resistance due to antibiotic overuse. Antimicrobial peptides, crucial components of innate immunity in animals and plants, exhibit effectiveness against multidrug-resistant bacteria while minimizing the development of drug resistance. In this study, the antibacterial peptide BsR1, comprising 21 amino acids, was finalized by predicting the active site of an antifungal gene and sequence optimization. BsR1 displayed broad-spectrum antibacterial activities against diverse Gram-positive and Gram-negative bacteria, with a low minimum inhibitory concentration of 4.25–17 μM. Stability experiments demonstrated that BsR1 has high resistance to thermal, ultraviolet, and acid-base conditions, while revealing increased sensitivity to divalent ions Ca 2+ and Mg 2+ . The mode of action of BsR1 involved cell membrane damage, leading to bacterial cell structure disruption and subsequent death. Secondary structure prediction indicated a linear helical conformation with a positive charge of +7.5, facilitating its interaction with the target cell membrane. BsR1 exhibited excellent biological safety, as it did not induce necrosis in tobacco leaves, and the low observed hemolytic effect on mammalian cells with a value of 3.26%. Additionally, BsR1 demonstrated the ability to enhance disease resistance in rice and effectively curbed the spread of rice bacterial blight. This research presents BsR1 as a novel approach and potential medication in the development of antibacterial drugs, offering a valuable tool in combating pathogenic microorganisms, particularly in plants. IMPORTANCE This study addresses the critical need for new antibacterial drugs in the face of bacterial multidrug resistance resulting from antibiotic overuse. It highlights the significance of antimicrobial peptides as essential components of innate immunity in animals and plants, which have been proven effective against multidrug-resistant bacteria and are difficult to develop resistance against. This study successfully synthesizes a broad-spectrum antibacterial peptide, BsR1, with strong inhibitory activities against various Gram-positive and Gram-negative bacteria. BsR1 demonstrates favorable stability and a mode of action that damages bacterial cell membranes, leading to cell death. It also exhibits biological safety and shows potential in enhancing disease resistance in rice. This research offers a novel approach and potential medication for antibacterial drug development, presenting a valuable tool in combating pathogenic microorganisms, particularly in plants.

Funder

The Fundamental Research Funds for the Central Universities

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3