Sequencing and culture-based characterization of the vaginal and uterine microbiota in beef cattle that became pregnant or remained open following artificial insemination

Author:

Webb Emily M.1,Holman Devin B.2ORCID,Schmidt Kaycie N.1,Pun Beena1,Sedivec Kevin K.3,Hurlbert Jennifer L.4,Bochantin Kerri A.4,Ward Alison K.4,Dahlen Carl R.4,Amat Samat1ORCID

Affiliation:

1. Department of Microbiological Sciences, North Dakota State University , Fargo, North Dakota, USA

2. Lacombe Research and Development Centre, Agriculture and Agri-Food Canada , Lacombe, Alberta, Canada

3. Central Grasslands Research Extension Center, North Dakota State University , Streeter, North Dakota, USA

4. Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University , Fargo, North Dakota, USA

Abstract

ABSTRACT In this study, we evaluated the vaginal and uterine microbiota between beef cattle that became pregnant via artificial insemination (AI) and those that remained open to identify microbial signatures associated with fertility. We also characterized the culturable fraction of these microbiota and screened certain vaginal and uterine bacterial isolates for antimicrobial resistance. For this, vaginal and uterine swabs were collected before AI from two cohorts of Angus-crossbred cattle: mature cows (vaginal and uterine: 27 open and 31 pregnant) and heifers (vaginal: 26 open and 33 pregnant). The microbiota of these samples were assessed using 16S rRNA gene sequencing and culturing. Twenty-nine vaginal and uterine bacterial isolates were screened for resistance against 41 antibiotics. Within the vaginal microbiota, 11 amplicon sequence variants (ASVs) were more relatively abundant in the open heifers compared with the pregnant heifers. No differentially abundant ASVs were detected in the vaginal samples from pregnant versus open cows. Pregnant cows had a distinct uterine microbiota community structure ( P = 0.008) and interaction network structure compared with open cows. Twenty-eight differentially abundant uterine ASVs were observed between the pregnant and open cows. Community structure and diversity were different between the cow’s vagina and uterus. A total of 733 bacterial isolates were recovered from vaginal (512) and uterine (221) swabs under aerobic (83 different species) and anaerobic (69 species) culturing. Among these isolates were pathogenic species and those mostly susceptible to tested antibiotics. Overall, our results indicate that fertility-associated taxonomic signatures are present in the bovine uterine and vaginal microbiota. IMPORTANCE Emerging evidence suggests that microbiome-targeted approaches may provide a novel opportunity to reduce the incidence of reproductive failures in cattle. To develop such microbiome-based strategies, one of the first logical steps is to identify reproductive microbiome features related to fertility and to isolate the fertility-associated microbial species for developing a future bacterial consortium that could be administered before breeding to enhance pregnancy outcomes. Here, we characterized the vaginal and uterine microbiota in beef cattle that became pregnant or remained open via artificial insemination and identified microbiota features associated with fertility. We compared similarities between vaginal and uterine microbiota and between heifers and cows. Using culturing, we provided new insights into the culturable fraction of the vaginal and uterine microbiota and their antimicrobial resistance. Overall, our findings will serve as an important basis for future research aimed at harnessing the vaginal and uterine microbiome for improved cattle fertility.

Funder

North Dakota Agricultural Experiment Station

North Dakota State University EPSCoR STEM Research and Education Funding-Seed Award

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3