Genomic and transcriptomic analysis of Ligilactobacillus salivarius IBB3154—in search of new promoters for vaccine construction

Author:

Kobierecka Patrycja1,Wyszyńska Agnieszka1ORCID,Aleksandrzak-Piekarczyk Tamara2ORCID,Sałańska Agnieszka2,Gawor Jan3,Bardowski Jacek2,Jagusztyn Krynicka Katarzyna Elżbieta1

Affiliation:

1. Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Warsaw, Poland

2. Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw, Poland

3. DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw, Poland

Abstract

ABSTRACT Transcriptomic analysis of the genome sequenced Ligilactobacillus salivarius strain IBB3154 grown at two different temperatures (37°C vs 42°C) identified differentially expressed genes involved in metabolic pathways, osmoregulation, and surface protein expression. Two highly expressed genes, sasA1 and sasA2 , which encode cell wall-anchored proteins belonging to the serine-rich repeat protein group, were found to be temperature-inducible. Moonlighting proteins with various functions, such as glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase, elongation factor Tu, and enolase, were highly expressed at both temperatures. The efficiency of promoters has been confirmed by the β-glucuronidase activity test; however, temperature dependence was not detected. We also found that the P sasA1 promoter retained its activity in the presence of bile salts. Knowledge of promoters that are highly active in L. salivarius cells can be used to produce strains that are carriers of immunogenic proteins. IMPORTANCE The genome of the strain Ligilactobacillus salivarius IBB3154 was sequenced, and transcriptome analysis was carried out at two different temperatures, allowing the determination of gene expression levels in response to environmental changes (temperature). Genes with higher expression at 42°C were identified. The use of a reporter gene (β- glucuronidase) did not confirm the transcriptomic results; it was found that the promoters of the genes sasA1 and sasA2 were active in the presence of bile salts. This opens up new opportunities for the overexpression of genes of other bacterial species in Ligilactobacillus cells in the intestinal environment.

Funder

National Science Center, Poland

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3