Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactis

Author:

Ocejo Medelin1ORCID,Mugica Maitane1ORCID,Oporto Beatriz1ORCID,Lavín José Luis2ORCID,Hurtado Ana1ORCID

Affiliation:

1. Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain

2. Applied Mathematics Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain

Abstract

ABSTRACT Enterococcus faecalis ( Efs ) and Enterococcus faecium ( Efm ) are major causes of multiresistant healthcare-associated or nosocomial infections. Efm has been traditionally divided into clades A (healthcare associated) and B (community associated) but clade B has been recently reassigned to Enterococcus lactis ( Elc ). However, identification techniques do not routinely differentiate Elc from Efm . As part of a longitudinal study to investigate the antimicrobial resistance of Enterococcus in dairy cattle, isolates initially identified as Efm were confirmed as Elc after Oxford-Nanopore long-fragment whole-genome sequencing and genome comparisons. An Efm -specific PCR assay was developed and used to identify isolates recovered from animal feces on five farms, resulting in 44 Efs , 23 Efm , and 59 Elc . Resistance, determined by broth microdilution, was more frequent in Efs than in Efm and Elc but all isolates were susceptible to ampicillin, daptomycin, teicoplanin, tigecycline, and vancomycin. Genome sequencing analysis of 32 isolates identified 23 antimicrobial resistance genes (ARGs, mostly plasmid-located) and 2 single nucleotide polymorphisms associated with resistance to 10 antimicrobial classes, showing high concordance with phenotypic resistance. Notably, linezolid resistance in Efm was encoded by the optrA gene, located in plasmids downstream of the fexA gene. Although most Elc lacked virulence factors and genetic determinants of resistance, one isolate carried a plasmid with eight ARGs. This study showed that Elc is more prevalent than Efm in dairy cattle but carries fewer ARGs and virulence genes. However, Elc can carry multi-drug-resistant plasmids like those harbored by Efm and could act as a donor of ARGs for other pathogenic enterococcal species. IMPORTANCE Enterococcus species identification is crucial due to differences in pathogenicity and antibiotic resistance profiles. The failure of traditional methods or whole-genome sequencing-based taxonomic classifiers to distinguish Enterococcus lactis ( Elc ) from Enterococcus faecium ( Efm ) results in a biased interpretation of Efm epidemiology. The Efm species-specific real-time PCR assay developed here will help to properly identify Efm (only the formerly known clade A) in future studies. Here, we showed that Elc is prevalent in dairy cattle, and although this species carries fewer genetic determinants of resistance (GDRs) than Enterococcus faecalis ( Efs ) and Efm , it can carry multi-drug-resistant (MDR) plasmids and could act as a donor of resistance genes for other pathogenic enterococcal species. Although all isolates ( Efs , Efm , and Elc ) were susceptible to critically or highly important antibiotics like daptomycin, teicoplanin, tigecycline, and vancomycin, the presence of GDRs in MDR-plasmids is a concern since antimicrobials commonly used in livestock could co-select and confer resistance to critically important antimicrobials not used in food-producing animals.

Funder

Department of Economic Development, Sustainability and Environemt of the Basque Government

Department of Economic Development, Sustainability and Environment of the Basque Government

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3