hsdS A regulated extracellular vesicle-associated PLY to protect Streptococcus pneumoniae from macrophage killing via LAPosomes

Author:

Wang Liping1ORCID,Liu Mengyuan1,Qi Yixin1,Wang Jian1,Shi Qixue1,Xie Xiaolin1,Zhou Changlin1ORCID,Ma Lingman1ORCID

Affiliation:

1. College of Life Science and Technology, China Pharmaceutical University , Nanjing, Jiangsu, China

Abstract

ABSTRACT Streptococcus pneumoniae is a notorious human opportunistic pathogen which undergoes a spontaneous and reversible phenotypic change in response to the host environment. We demonstrated that the regulatory gene hsdS A of DNA methylation in the type I restriction modification system altered colony transparency and substantially contributed to S. pneumoniae virulence. Most importantly, hsdS A regulated the production of extracellular vesicles (EVs) which package cytosolic, surface, and secreted proteins, including pneumolysin (PLY). Interestingly, we confirmed that EV-associated PLY utilized internalization into macrophages to prolong the survival of intracellular bacteria as a major immune evasion strategy; that is, EV-associated PLY produced by the D39 strain (EVs-D39) could induce the formation of LC3-associated monolayer vacuoles [LC3-associated phagocytosis (LAP)] and co-localize with the NADPH oxidase 2 (NOX2) complex but not ULK1 when macrophages were infected with the D39Δ ply strain. In addition, EV-associated PLY derived from the EVs-D39 promoted macrophages to release more reactive oxygen species (ROS) and expression of p-p70s6k than EV-associated PLY derived from the D39Δ hsdS A strain (EVs-D39Δ hsdS A ), whereas the expression of p-ULK1 was reversed, indicating that EVs-D39Δ hsdS A was more likely to induce conventional xenophagy. Furthermore, we identified the β1 integrin receptor as a crucial inducer of ROS to mediate LAP activation. Bacterial evasion of host clearance is closely related to insufficient acidification after the fusion of autophagosomes or LAPosomes with lysosomes. Of note, we found EV-associated PLY damaged the integrity of the lysosome membrane and changed the pH gradient, resulting in lysosomes being unable to remove intracellular bacteria and ultimately prolonging the survival of S. pneumoniae in macrophages. Finally, the extracted mouse alveolar macrophages and mouse intranasal infection models were employed to further verify the above findings. IMPORTANCE S. pneumoniae is a major human pathogen that undergoes a spontaneous and reversible phase variation that allows it to survive in different host environments. Interestingly, we found hsdS A , a gene that manipulated the phase variation, promoted the survival and replication of S. pneumoniae in macrophages by regulating EV production and EV-associated PLY. More importantly, here we provided the first evidence that higher EV-associated PLY (produced by D39) could form LAPosomes that were single membrane compartments containing S. pneumoniae , which are induced by integrin β1/NOX2/ROS pathway. At the same time, EV-associated PLY increased the permeability of lysosome membrane and induced an insufficient acidification to escape the host killing, and ultimately prolonged the survival of S. pneumoniae in macrophages. In contrast, lower EV-associated PLY (produced by D39Δ hsdS A ) activated ULK1 recruitment to form double-layered autophagosomes to eliminate bacteria.

Funder

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3