A chemical screen identifies structurally diverse metal chelators with activity against the fungal pathogen Candida albicans

Author:

Fallah Sara1ORCID,Duncan Dustin12,Reichl Kyle D.3,Smith Michael J.3,Wang Wenyu3,Porco John A.3,Brown Lauren E.3,Whitesell Luke1,Robbins Nicole1ORCID,Cowen Leah E.1ORCID

Affiliation:

1. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada

2. Department of Chemistry, Brock University, St. Catharines, Ontario, Canada

3. Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, USA

Abstract

ABSTRACT Candida albicans , one of the most prevalent human fungal pathogens, causes diverse diseases extending from superficial infections to deadly systemic mycoses. Currently, only three major classes of antifungal drugs are available to treat systemic infections: azoles, polyenes, and echinocandins. Alarmingly, the efficacy of these antifungals against C. albicans is hindered both by basal tolerance toward the drugs and the development of resistance mechanisms such as alterations of the drug’s target, modulation of stress responses, and overexpression of efflux pumps. Thus, the need to identify novel antifungal strategies is dire. To address this challenge, we screened 3,049 structurally-diverse compounds from the Boston University Center for Molecular Discovery (BU-CMD) chemical library against a C. albicans clinical isolate and identified 17 molecules that inhibited C. albicans growth by >80% relative to controls. Among the most potent compounds were CMLD013360, CMLD012661, and CMLD012693, molecules representing two distinct chemical scaffolds, including 3-hydroxyquinolinones and a xanthone natural product. Based on structural insights, CMLD013360, CMLD012661, and CMLD012693 were hypothesized to exert antifungal activity through metal chelation. Follow-up investigations revealed all three compounds exerted antifungal activity against non-albicans Candida , including Candida auris and Candida glabrata , with the xanthone natural product CMLD013360 also displaying activity against the pathogenic mould Aspergillus fumigatus . Media supplementation with metallonutrients, namely ferric or ferrous iron, rescued C. albicans growth, confirming these compounds act as metal chelators. Thus, this work identifies and characterizes two chemical scaffolds that chelate iron to inhibit the growth of the clinically relevant fungal pathogen C. albicans IMPORTANCE The worldwide incidence of invasive fungal infections is increasing at an alarming rate. Systemic candidiasis caused by the opportunistic pathogen Candida albicans is the most common cause of life-threatening fungal infection. However, due to the limited number of antifungal drug classes available and the rise of antifungal resistance, an urgent need exists for the identification of novel treatments. By screening a compound collection from the Boston University Center for Molecular Discovery (BU-CMD), we identified three compounds representing two distinct chemical scaffolds that displayed activity against C. albicans . Follow-up analyses confirmed these molecules were also active against other pathogenic fungal species including Candida auris and Aspergillus fumigatus . Finally, we determined that these compounds inhibit the growth of C. albicans in culture through iron chelation. Overall, this observation describes two novel chemical scaffolds with antifungal activity against diverse fungal pathogens.

Funder

Canadian Government | Canadian Institutes of Health Research

HHS | National Institutes of Health

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3