Targeted metagenomic assessment reflects critical colonization in battlefield injuries

Author:

Kok Car Reen1ORCID,Mulakken Nisha2,Thissen James B.1,Grey Scott F.34,Avila-Herrera Aram2,Upadhyay Meenu M.34,Lisboa Felipe A.345,Mabery Shalini1,Elster Eric A.35,Schobel Seth A.34,Be Nicholas A.1ORCID

Affiliation:

1. Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California, USA

2. Computing Directorate, Lawrence Livermore National Laboratory , Livermore, California, USA

3. Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS) , Bethesda, Maryland, USA

4. Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. , Bethesda, Maryland, USA

5. Walter Reed National Military Medical Center , Bethesda, Maryland, USA

Abstract

ABSTRACT Current diagnostics and clinical management strategies for combat wounds are based on decisions made by expert clinicians. However, even in the hands of experienced surgeons, wounds from combat injuries can exhibit failed healing and complications related to limitations in the rapid and comprehensive generation of diagnostic information. Previous studies have demonstrated the possible use of genomic sequencing approaches to detect microbial signatures involved in combat casualty care. While effective, whole metagenome sequencing is limited by the depth required to confidently detect all relevant signatures. To address this, we developed a targeted capture sequencing panel to detect microbial signatures relevant to wound healing. These targets include known microbial nosocomial pathogens, wound colonizers, and genes involved in virulence and antimicrobial resistance. A bioinformatics pipeline was built to identify genomic regions of interest and over 8,000 oligonucleotide probes were designed for capture. The panel was synthesized and validated using control reference genomes in human background and on wound-effluent samples from a cohort of combat-injured U.S. service members. Our panel was sensitive against wound-colonizing species, Acinetobacter baumannii and Pseudomonas aeruginosa , and was specific in detecting corresponding virulence and antimicrobial-resistance genes as well as other pathogenic species present in microflora mixtures. Random forest feature permutation confirmed the prevalence of Acinetobacter and Pseudomonas in critically colonized wounds and wounds that failed to heal, respectively. Our results demonstrate the capability of targeted sequencing tools and analysis platforms to profile and deliver information on pathogenic factors influencing wound progression, thereby guiding therapeutic intervention. IMPORTANCE Microbial contamination in combat wounds can lead to opportunistic infections and adverse outcomes. However, current microbiological detection has a limited ability to capture microbial functional genes. This work describes the application of targeted metagenomic sequencing to profile wound bioburden and capture relevant wound-associated signatures for clinical utility. Ultimately, the ability to detect such signatures will help guide clinical decisions regarding wound care and management and aid in the prediction of wound outcomes.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3