Antisense inhibition of RNA polymerase α subunit of Clostridioides difficile

Author:

Pal Rusha1,Seleem Mohamed N.12ORCID

Affiliation:

1. Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, Virginia, USA

2. Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University , Blacksburg, Virginia, USA

Abstract

ABSTRACT Clostridioides difficile, the causative agent of antibiotic-associated diarrhea and pseudomembranous colitis, has emerged as a major enteric pathogen in recent years. Antibiotic treatment perturbs the gut microbiome homeostasis, which facilitates the colonization and proliferation of the pathogen in the host intestine. Paradoxically, the clinical repertoire for C. difficile infection includes the antibiotics vancomycin and/or fidaxomicin. The current therapies do not address the perturbed gut microbiome, which supports the recurrence of infection after cessation of antibiotic therapy. Peptide nucleic acids (PNAs) are novel alternatives to traditional antimicrobial therapy capable of forming strong and stable complexes with RNA and DNA, thus permitting targeted inhibition of specific genes. Here, we report a novel PNA that can target the RNA polymerase α subunit ( rpoA ) in C. difficile . The designed anti- rpoA construct inhibited clinical isolates of C. difficile (minimum inhibitory concentration values ranged between 4 and 8 µM) and exhibited bactericidal activity. Furthermore, silencing of the rpoA gene suppressed the expression of genes that encode virulence factors [toxin A ( tcdA ), toxin B ( tcdB )] in C. difficile , and the gene that encodes the transcription factor stage 0 sporulation protein ( spoOA ). Interestingly, the efficacy of the designed PNA conjugate remained unaffected even when tested at different pH levels and against a high inoculum of the pathogen. The rpoA -TAT conjugate was very specific against C. difficile and did not inhibit members of the beneficial gut microflora. Taken altogether, our study confirms that the rpoA gene can be a promising narrow-spectrum therapeutic target to curb C. difficile infection. IMPORTANCE The widespread use of antibiotics can destroy beneficial intestinal microflora, opening the door for spores of Clostridioides difficile to run rampant in the digestive system, causing life-threatening diarrhea. Alternative approaches to target this deadly pathogen are urgently needed. We utilized targeted therapeutics called peptide nucleic acids (PNAs) to inhibit gene expression in C. difficile . Inhibition of the RNA polymerase α subunit gene ( rpo A) by PNA was found to be lethal for C. difficile and could also disarm its virulence factors. Additionally, antisense inhibition of the C. difficile rpo A gene did not impact healthy microflora. We also propose a novel approach to manipulate gene expression in C. difficile without the need for established genetic tools.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3