A rapid and sensitive CRISPR-Cas12a for the detection of Fusobacterium nucleatum

Author:

Qu Hai1,Zhang Wenjing2,Li Jianghao3,Fu Qingshan3,Li Xiaoxia3,Wang Miaomiao3,Fu Guangyu3,Cui Jing1ORCID

Affiliation:

1. Department of Pathogens, Medical College, Zhengzhou University, Zhengzhou, China

2. Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China

3. Autobio Diagnostics Co., Ltd, Zhengzhou, China

Abstract

ABSTRACT Fusobacterium nucleatum (Fn), as a conditional pathogen, can cause a range of oral and gastrointestinal diseases. However, existing clinical detection methods require expensive equipment and complex procedures, which are inconvenient for large-scale screening in epidemiological research. The purpose of this study was to establish a reliable, rapid, and inexpensive detection method based on CRISPR/Cas12a technology for the detection of Fn. Specific recombinase polymerase amplification (RPA) primer sequences and crRNA sequences were designed based on the nusG gene of Fn. Subsequently, a fluorescence assay and a lateral flow immunoassay were established using the RPA and CRISPR-Cas12a system (RPA-CRISPR-Cas12a). Sensitivity validation revealed a limit of detection of 5 copies/µL. This method could distinguish Fn from other pathogens with excellent specificity. Furthermore, the RPA-CRISPR-Cas12a assay was highly consistent with the classical quantitative real-time PCR method when testing periodontal pocket samples. This makes it a promising method for the detection of Fn and has the potential to play an increasingly important role in infectious disease testing. IMPORTANCE Fusobacterium nucleatum (Fn) naturally exists in the microbial communities of the oral and gastrointestinal tracts of healthy individuals and can cause inflammatory diseases in the oral and gastrointestinal tracts. Recent studies have shown that Fn is closely associated with the occurrence and development of gastrointestinal cancer. Therefore, the detection of Fn is very important. Unlike the existing clinical detection methods, this study established a fluorescence-based assay and lateral flow immunoassay based on the RPA and CRISPR-Cas12a system (RPA-CRISPR-Cas12a), which is fast, reliable, and inexpensive and can complete the detection within 30–40 minutes. This makes it a promising method for the detection of Fn and has the potential to play an increasingly important role in infectious disease testing.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3