Nosocomial transmission of fluconazole-resistant Candida glabrata bloodstream isolates revealed by whole-genome sequencing

Author:

Hwang In Ji1,Kwon Yong Jun2ORCID,Lim Ha Jin2,Hong Ki Ho3,Lee Hyukmin3,Yong Dongeun3ORCID,Won Eun Jeong4,Byun Seung A.2,Lee Ga Yeong2,Kim Soo Hyun2,Song Eun Song1,Shin Jong Hee2ORCID

Affiliation:

1. Department of Pediatrics, Chonnam National University Medical School, Gwangju, South Korea

2. Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea

3. Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea

4. Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea

Abstract

ABSTRACT The clonal transmission of fluconazole-resistant Candida glabrata isolates within hospitals has seldom been analyzed by whole-genome sequencing (WGS). We performed WGS on 79 C . glabrata isolates, comprising 31 isolates from three premature infants with persistent C. glabrata bloodstream infection despite antifungal treatment in the same neonatal intensive care unit (NICU) in 2022 and 48 (27 fluconazole-resistant and 21 fluconazole-susceptible dose-dependent) bloodstream isolates from 48 patients in 15 South Korean hospitals from 2010 to 2022. Phylogenetic analysis based on WGS single-nucleotide polymorphisms (SNPs) distinguished the 79 isolates according to multilocus sequence typing (MLST) (17 sequence type [ST]3, 13 ST7, two ST22, 41 ST26, four ST55, and two ST59 isolates) and unveiled two possible clusters of nosocomial transmission among ST26 isolates. One cluster from two premature infants with overlapping NICU hospitalizations in 2022 encompassed 15 fluconazole-resistant isolates harboring pleiotropic drug-resistance transcription factor (Pdr1p) P258L (13 isolates) or N1086I (two isolates), together with 10 fluconazole-susceptible dose-dependent isolates lacking Pdr1p SNPs. The other cluster indicated unforeseen clonal transmission of fluconazole-resistant bloodstream isolates among five patients (four post-lung transplantation and one with diffuse interstitial lung disease) in the same hospital over 8 months. Among these five isolates, four obtained after exposure to azole antifungals harbored distinct Pdr1p SNPs (N1091D, E388Q, K365E, and R376Q). The findings reveal the transmission patterns of clonal bloodstream isolates of C. glabrata among patients undergoing antifungal treatment, exhibiting different levels of fluconazole susceptibility or distinct Pdr1p SNP profiles. IMPORTANCE The prevalence of fluconazole-resistant bloodstream infections caused by Candida glabrata is increasing globally, but the transmission of these resistant strains within hospitals has rarely been documented. Through whole-genome sequencing and epidemiological analyses, this study identified two potential clusters of C. glabrata bloodstream infections within the same hospital, revealing the transmission of clonal C. glabrata strains with different levels of fluconazole susceptibility or distinct transcription factor pleiotropic drug resistance protein 1 (Pdr1p) single-nucleotide polymorphism profiles among patients receiving antifungal therapy.

Funder

National Research Foundation of Korea

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3