Mouse intestinal microbiome modulation by oral administration of a GABA-producing Bifidobacterium adolescentis strain

Author:

Tamés Héctor12,Sabater Carlos12,Royo Félix345ORCID,Margolles Abelardo12,Falcón Juan Manuel345ORCID,Ruas-Madiedo Patricia12ORCID,Ruiz Lorena12ORCID

Affiliation:

1. Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n , Villaviciosa, Asturias, Spain

2. Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) , Oviedo, Asturias, Spain

3. Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) , Derio, Spain

4. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd) , Madrid, Spain

5. IKERBASQUE, Basque Foundation for Science , Bilbao, Spain

Abstract

ABSTRACT Emerging evidence suggests that gut microbes can significantly contribute to central nervous system (CNS) well functioning through several gut microbiome-brain signaling mechanisms, among which the production of neurotransmitters by commensal microbes is very relevant. Hence, there is increasing interest in developing probiotics with capacity to deliver, locally within the gut ecosystem, neurotransmitters. The gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the CNS, and its disbalance has been associated with numerous disorders, including depression or anxiety. Furthermore, some commensal gut microorganisms are capable to produce GABA from its precursor, glutamate, whose concentration is generally higher in patients from disorders such as fibromyalgia, chronic fatigue, and pain. Therefore, we postulate that the administration of GABA-producing probiotic microorganisms may contribute to ameliorate conditions related to high glutamate/low GABA concentrations. In a prior work, we demonstrated a significant reduction of serum glutamate concentration in mice following 2-week administration of a GABA-producing Bifidobacterium adolescentis strain, IPLA60004. Herein, we further investigate the impact that the probiotic administration may have on the gut microbiome composition and metabolism. Remarkably, the gut microbiota modulation observed was different in animals receiving the GABA-producing strain, IPLA60004, as compared to animals receiving a closely related strain without GABA-producing ability. Genera of commensal and beneficial microorganisms, including Lactobacillus, Roseburia, and novel Lachnospiraceae genera, reached significantly higher representation at late intervention points in the fecal microbiota of animals receiving the GABA-producing strain, suggesting that some of the physiological effects of the probiotic administration may be linked to specific gut modulation effects. IMPORTANCE The gut microbiome-brain communication signaling has emerged in recent years as a novel target for intervention with the potential to ameliorate some conditions associated with the central nervous system. Hence, probiotics with capacity to produce neurotransmitters, for instance, have come up as appealing alternatives to treat disorders associated with disbalanced neurotransmitters. Herein, we further deep into the effects of administering a gamma-aminobutyric acid (GABA)-producing Bifidobacterium strain, previously demonstrated to contribute to reduce serum glutamate levels, in the gut microbiome composition and metabolic activity in a mouse model. Our results demonstrate that the GABA-producing strain administration results in a specific pattern of gut microbiota modulation, different from the one observed in animals receiving non-GABA-producing strains. This opens new avenues to delineate the specific mechanisms by which IPLA60004 administration contributes to reducing serum glutamate levels and to ascertain whether this effect could exert health benefits in patients of diseases associated with high-glutamate serum concentrations.

Funder

MCIN/AEI

Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3