Saccharomyces cerevisiae biofactory to produce naringenin using a systems biology approach and a bicistronic vector expression strategy in flavonoid production

Author:

Mejía-Manzano Luis Alberto1ORCID,Ortiz-Alcaráz César Iván1,Parra Daza Laura E.12,Suarez Medina Lina2,Vargas-Cortez Teresa1,Fernández-Niño Miguel23,González Barrios Andrés Fernando2,González-Valdez José1ORCID

Affiliation:

1. School of Engineering and Science, Tecnologico de Monterrey , Monterrey, Nuevo León, Mexico

2. Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes , Bogotá, Colombia

3. Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry , Halle, Germany

Abstract

ABSTRACT Naringenin is the central flavonoid in the biosynthesis of several bioactive compounds and presents a growing demand for its nutraceutical properties. Naringenin extraction from plants is non-viable due to low yields, and microbial platforms could represent a controlled and sustained alternative to produce it using several metabolic engineering tools. This study shows the naringenin production in Saccharomyces cerevisiae from glucose through a combined approach of systems biology, enzyme criteria selection, and a molecular engineering strategy. In silico prediction using a mixed integer linear programming (MILP) algorithm showed that the phenylpropanoid pathway was the shortest and most viable metabolic pathway. Two biscistronic constructs were generated using the PTV-1 2A peptide sequence, and a naringenin biofactory was assembled with the phenylalanine ammonia-lyase/tyrosine ammonia-lyase genes encoding phenylalanine/tyrosine ammonia-lyase ( Rhodobacter capsulatus ), 4-coumaroyl (4 Cl) encoding a p -coumaroyl-CoA ligase ( Solanum lycopersicum ), CHS encoding chalcone synthase ( Hypericum androsaemum ), and CHI encoding a chalcone isomerase ( Glycine max ). Naringenin productivity in batch fermentation was about 40.67 ± 3.47 µg/Lh with a 6.10 ± 0.52 mg/L titer (22.41 ± 1.91 µM) and a 3.26 ± 1.36 mg/g yield ( Y P / S ) with the detection of additional flavonoids. The obtained concentration is better than other related works in diverse engineered microorganisms. The results suggest a successful and optimizable alternative for the heterologous flavanone production in yeast combined with bicistronic expression mediated by a 2A peptide sequence for the first time. This strategy supports the production of extensive routes for other nutraceutical compounds. IMPORTANCE Flavonoids are a group of compounds generally produced by plants with proven biological activity, which have recently beeen recommended for the treatment and prevention of diseases and ailments with diverse causes. In this study, naringenin was produced in adequate amounts in yeast after in silico design. The four genes of the involved enzymes from several organisms (bacteria and plants) were multi-expressed in two vectors carrying each two genes linked by a short viral peptide sequence. The batch kinetic behavior of the product, substrate, and biomass was described at lab scale. The engineered strain might be used in a more affordable and viable bioprocess for industrial naringenin procurement.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3