Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region.

Author:

Ben-Shushan E,Pikarsky E,Klar A,Bergman Y

Abstract

In this study we evaluate, for the first time, the molecular mechanism that underlies the extinction of a tissue-specific transcription factor, Oct-3/4, in somatic cell hybrids and compared it with its down-regulation in retinoic acid (RA)-treated embryonal carcinoma (EC) cells. The Oct-3/4 gene, which belongs to the POU family of transcription factors and is abundantly expressed in EC (OTF9-63) cells, provides an excellent model system with which to study the extinction phenomenon. Unlike other genes whose expression has been repressed in hybrid cells but not during in vivo differentiation, Oct-3/4 expression is dramatically repressed in OTF9-63 x fibroblast hybrids and also during embryogenesis. The ectopic expression of Oct-3/4 in hybrid cells under a constitutive promoter is sufficient for transcriptional activation of an octamer-dependent promoter. These results argue against the possibility that fibroblasts contain a direct repressor which binds directly to the octamer sequence and prevents Oct-3/4 protein from binding. The extinction of Oct-3/4 binding activity in the hybrid cells occurs at the level of mRNA transcription, similarly to the repression of Oct-3/4 transcription during in vivo differentiation. This shutdown of Oct-3/4 transcription in hybrid cells and in RA-treated EC cells is accompanied by de novo methylation of its 1.3-kb upstream region. In contrast to EC cells, in which this region is sensitive to MspI digestion, in hybrid cells and in RA-treated EC cells, the Oct-3/4 upstream region is resistant to MspI digestion, which suggests a change in its chromatin structure. Furthermore, extinction is not restricted to the endogenous Oct-3/4 gene but is also exerted upon a transiently transfected reporter gene driven by the Oct-3/4 upstream region. Thus, changes in the cellular activity of trans-acting factors acting on the upstream region also contribute to the inability of the hybrid and RA-treated EC cells to generate Oct-3/4 transcripts. In conclusion, this study draws a connection between the shutdown of Oct-3/4 expression in RA-differentiated EC cells and its extinction in hybrid cells. In both systems, repression of Oct-3/4 expression is achieved through changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream regulatory region.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3