Insulin-mediated endothelin signaling is antiviral during West Nile virus infection

Author:

Trammell Chasity E.1ORCID,Rowe Evelyn H.1,Char Aditya B.1,Jones Brianne J.1,Fawcett Stephen1,Ahlers Laura R. H.2,Goodman Alan G.13ORCID

Affiliation:

1. School of Molecular Biosciences, College of Veterinary Medicine, Washington State University , Pullman, Washington, USA

2. RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland, USA

3. Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University , Pullman, Washington, USA

Abstract

ABSTRACT West Nile virus (WNV) is the most prevalent mosquito-borne virus in the United States with approximately 2,000 cases each year. There are currently no approved human vaccines and a lack of prophylactic and therapeutic treatments. Understanding host responses to infection may reveal potential intervention targets to reduce virus replication and disease progression. The use of Drosophila melanogaster as a model organism to understand innate immunity and host antiviral responses is well-established. Previous studies revealed that insulin-mediated signaling regulates WNV infection in invertebrates by regulating canonical antiviral pathways. Because insulin signaling is well-conserved across insect and mammalian species, we sought to determine if results using D. melanogaster can be extrapolated for the analysis of orthologous pathways in humans. Here, we identify insulin-mediated endothelin signaling using the D. melanogaster model and evaluate an orthologous pathway in human cells during WNV infection. We demonstrate that endothelin signaling reduces WNV replication through the activation of canonical antiviral signaling. Taken together, our findings show that endothelin-mediated antiviral immunity is broadly conserved across species and reduces replication of viruses that can cause severe human disease. IMPORTANCE Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identify potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.

Funder

Washington State University College of Veterinary Medicine Stanley L. Adler Research Fund

NIH/ NIGMS-funded predoctoral fellowship

Poncin Fellowship

WSU Research Assistantships for Diverse Scholars

ARCS Foundation Fellowship

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3