Regulation of the p85/p110 Phosphatidylinositol 3′-Kinase: Stabilization and Inhibition of the p110α Catalytic Subunit by the p85 Regulatory Subunit

Author:

Yu Jinghua1,Zhang Yitao1,McIlroy James1,Rordorf-Nikolic Tamara1,Orr George A.1,Backer Jonathan M.1

Affiliation:

1. Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461

Abstract

ABSTRACT We propose a novel model for the regulation of the p85/p110α phosphatidylinositol 3′-kinase. In insect cells, the p110α catalytic subunit is active as a monomer but its activity is decreased by coexpression with the p85 regulatory subunit. Similarly, the lipid kinase activity of recombinant glutathione S -transferase (GST)-p110α is reduced by 65 to 85% upon in vitro reconstitution with p85. Incubation of p110α/p85 dimers with phosphotyrosyl peptides restored activity, but only to the level of monomeric p110α. These data show that the binding of phosphoproteins to the SH2 domains of p85 activates the p85/p110α dimers by inducing a transition from an inhibited to a disinhibited state. In contrast, monomeric p110 had little activity in HEK 293T cells, and its activity was increased 15- to 20-fold by coexpression with p85. However, this apparent requirement for p85 was eliminated by the addition of a bulky tag to the N terminus of p110α or by the growth of the HEK 293T cells at 30°C. These nonspecific interventions mimicked the effects of p85 on p110α, suggesting that the regulatory subunit acts by stabilizing the overall conformation of the catalytic subunit rather than by inducing a specific activated conformation. This stabilization was directly demonstrated in metabolically labeled HEK 293T cells, in which p85 increased the half-life of p110. Furthermore, p85 protected p110 from thermal inactivation in vitro. Importantly, when we examined the effect of p85 on GST-p110α in mammalian cells at 30°C, culture conditions that stabilize the catalytic subunit and that are similar to the conditions used for insect cells, we found that p85 inhibited p110α. Thus, we have experimentally distinguished two effects of p85 on p110α: conformational stabilization of the catalytic subunit and inhibition of its lipid kinase activity. Our data reconcile the apparent conflict between previous studies of insect versus mammalian cells and show that p110α is both stabilized and inhibited by dimerization with p85.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3