EWS, but Not EWS-FLI-1, Is Associated with Both TFIID and RNA Polymerase II: Interactions between Two Members of the TET Family, EWS and hTAF II 68, and Subunits of TFIID and RNA Polymerase II Complexes

Author:

Bertolotti Anne1,Melot Thomas2,Acker Joël1,Vigneron Marc1,Delattre Olivier2,Tora Laszlo1

Affiliation:

1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, F-67404 Illkirch Cedex, C.U. de Strasbourg, 1 and

2. Institut Curie, Unité 434 de l’INSERM, 75248 Paris Cedex 05, 2 France

Abstract

ABSTRACT The t(11;22) chromosomal translocation specifically linked to Ewing sarcoma and primitive neuroectodermal tumor results in a chimeric molecule fusing the amino-terminus-encoding region of the EWS gene to the carboxyl-terminal DNA-binding domain encoded by the FLI-1 gene. As the function of the protein encoded by the EWS gene remains unknown, we investigated the putative role of EWS in RNA polymerase II (Pol II) transcription by comparing its activity with that of its structural homolog, hTAF II 68. We demonstrate that a portion of EWS is able to associate with the basal transcription factor TFIID, which is composed of the TATA-binding protein (TBP) and TBP-associated factors (TAF II s). In vitro binding studies revealed that both EWS and hTAF II 68 interact with the same TFIID subunits, suggesting that the presence of EWS and that of hTAF II 68 in the same TFIID complex may be mutually exclusive. Moreover, EWS is not exclusively associated with TFIID but, similarly to hTAF II 68, is also associated with the Pol II complex. The subunits of Pol II that interact with EWS and hTAF II 68 have been identified, confirming the association with the polymerase. In contrast to EWS, the tumorigenic EWS–FLI-1 fusion protein is not associated with either TFIID or Pol II in Ewing cell nuclear extracts. These observations suggest that EWS and EWS–FLI-1 may play different roles in Pol II transcription.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3