Cell cycle regulation of mouse H3 histone mRNA metabolism.

Author:

Alterman R B,Ganguly S,Schulze D H,Marzluff W F,Schildkraut C L,Skoultchi A I

Abstract

The mechanisms responsible for the periodic accumulation and decay of histone mRNA in the mammalian cell cycle were investigated in mouse erythroleukemia cells, using a cloned mouse H3 histone gene probe that hybridizes with most or all H3 transcripts. Exponentially growing cells were fractionated into cell cycle-specific stages by centrifugal elutriation, a method for purifying cells at each stage of the cycle without the use of treatments that arrest growth. Measurements of H3 histone mRNA content throughout the cell cycle show that the mRNA accumulates gradually during S phase, achieving its highest value in mid-S phase when DNA synthesis is maximal. The mRNA content then decreases as cells approach G2. These results demonstrate that the periodic synthesis of histones during S phase is due to changes in the steady-state level of histone mRNA. They are consistent with the conventional view in which histone synthesis is regulated coordinately with DNA synthesis in the cell cycle. The periodic accumulation and decay of H3 histone mRNA appear to be controlled primarily by changes in the rate of appearance of newly synthesized mRNA in the cytoplasm, determined by pulse-labeling whole cells with [3H]uridine. Measurements of H3 mRNA turnover by pulse-chase experiments with cells in S and G2 did not provide evidence for changes in the cytoplasmic stability of the mRNA during the period of its decay in late S and G2. Furthermore, transcription measurements carried out by brief pulse-labeling in vivo and by in vitro transcription in isolated nuclei indicate that the rate of H3 gene transcription changes to a much smaller extent than the steady-state levels of the mRNA or the appearance of newly synthesized mRNA in the cytoplasm. The results suggest that post-transcriptional processes make an important contribution to the periodic accumulation and decay of histone mRNA and that these processes may operate within the nucleus.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3