Rχ-01, a New Family of Oxazolidinones That Overcome Ribosome-Based Linezolid Resistance

Author:

Skripkin Eugene1,McConnell Timothy S.1,DeVito Joseph1,Lawrence Laura1,Ippolito Joseph A.1,Duffy Erin M.1,Sutcliffe Joyce1,Franceschi François1

Affiliation:

1. Rib-X Pharmaceuticals, Inc., 300 George Street, Suite 301, New Haven, Connecticut 06511

Abstract

ABSTRACT New and improved antibiotics are urgently needed to combat the ever-increasing number of multidrug-resistant bacteria. In this study, we characterized several members of a new oxazolidinone family, Rχ-01. This antibiotic family is distinguished by having in vitro and in vivo activity against hospital-acquired, as well as community-acquired, pathogens. We compared the 50S ribosome binding affinity of this family to that of the only marketed oxazolidinone antibiotic, linezolid, using chloramphenicol and puromycin competition binding assays. The competition assays demonstrated that several members of the Rχ-01 family displace, more effectively than linezolid, compounds known to bind to the ribosomal A site. We also monitored binding by assessing whether Rχ-01 compounds protect U2585 ( Escherichia coli numbering), a nucleotide that influences peptide bond formation and peptide release, from chemical modification by carbodiimide. The Rχ-01 oxazolidinones were able to inhibit translation of ribosomes isolated from linezolid-resistant Staphylococcus aureus at submicromolar concentrations. This improved binding corresponds to greater antibacterial activity against linezolid-resistant enterococci. Consistent with their ribosomal A-site targeting and greater potency, the Rχ-01 compounds promote nonsense suppression and frameshifting to a greater extent than linezolid. Importantly, the gain in potency does not impact prokaryotic specificity as, like linezolid, the members of the Rχ-01 family show translation 50% inhibitory concentrations that are at least 100-fold higher for eukaryotic than for prokaryotic ribosomes. This new family of oxazolidinones distinguishes itself from linezolid by having greater intrinsic activity against linezolid-resistant isolates and may therefore offer clinicians an alternative to overcome linezolid resistance. A member of the Rχ-01 family of compounds is currently undergoing clinical trials.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3