A CAF01-adjuvanted whole asexual blood-stage liposomal malaria vaccine induces a CD4 + T-cell-dependent strain-transcending protective immunity in rodent models

Author:

Okoth Winter A.1ORCID,Ho Mei-Fong1,Zaman Mehfuz1,Cooper Emily1,Som Priyanka1,Burgess Mark1,Walton Maddison1,Nevagi Reshma J.1,Beattie Lynette2,Murphy Declan2,Stanisic Danielle I.1ORCID,Good Michael F.1ORCID

Affiliation:

1. Institute for Glycomics, Griffith University, Southport, Queensland, Australia

2. The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia

Abstract

ABSTRACT Malaria is a leading cause of illness and death in children under 5 years of age in Sub-Saharan Africa. Currently, there is no highly efficacious malaria vaccine capable of inducing long-lasting immunity. This has increased interest in exploring different vaccine development strategies, including whole-parasite vaccines, and utilizing more effective adjuvant delivery systems. Here, we evaluate the immunogenicity and protective efficacy of a whole-parasite Plasmodium yoelii 17X blood-stage vaccine formulated with the clinically tested cationic adjuvant formulation, CAF01. The vaccine protected both inbred and outbred mice, and protected mice from homologous and heterologous challenge infections. Tracking of RBC subsets in vaccinated mice demonstrated that vaccine-induced immunity cleared parasitized normocytes as well as reticulocytes. Infection prior to vaccination led to an augmented level of protection and boosted immunity post vaccination. The vaccine induced parasite-specific IgG, mainly of the IgG1 subclass, and cellular responses, with a mixed Th1/Th2/Th17 cytokine profile. Mechanistic studies demonstrated that CD4 + T-cells (but not CD8 + T-cells), and Th1 and Th2 cytokines (interferon gamma and tumor necrosis factor, IL-10) were critical in controlling parasitemia and survival following challenge. Vaccinated µMT mice were not protected, suggesting that B-cells also play a role in protective immunity. Depletion of splenic macrophages with clodronate did not affect vaccine efficacy. These pre-clinical findings will inform the transition of this vaccine candidate into clinical trials. IMPORTANCE Malaria is a devastating disease that has claimed many lives, especially children <5 years of age in Sub-Saharan Africa, as documented in World Malaria Reports by WHO. Even though vector control and chemoprevention tools have helped with elimination efforts in some, if not all, endemic areas, these efforts have been hampered by serious issues (including drug and insecticide resistance and disruption to social cohesion caused by the COVID-19 pandemic). Development of an effective malaria vaccine is the alternative preventative tool in the fight against malaria. Vaccines save millions of lives each year and have helped in elimination and/or eradication of global diseases. Development of a highly efficacious malaria vaccine that will ensure long-lasting protective immunity will be a “game-changing” prevention strategy to finally eradicate the disease. Such a vaccine will need to counteract the significant obstacles that have been hampering subunit vaccine development to date, including antigenic polymorphism, sub-optimal immunogenicity, and waning vaccine efficacy.

Funder

DHAC | National Health and Medical Research Council

Medical Research Future Fund

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3