Defining the networks that connect RNase III and RNase J-mediated regulation of primary and specialized metabolism in Streptomyces venezuelae

Author:

Pepler Meghan A. D.12,Mulholland Emma L.12,Montague Freddie R.12,Elliot Marie A.12ORCID

Affiliation:

1. Department of Biology, McMaster University

2. Institute for Infectious Disease Research, McMaster University

Abstract

ABSTRACT RNA metabolism involves coordinating RNA synthesis with RNA processing and degradation. Ribonucleases play fundamental roles within the cell, contributing to the cleavage, modification, and degradation of RNA molecules, with these actions ensuring appropriate gene regulation and cellular homeostasis. Here, we employed RNA sequencing to explore the impact of RNase III and RNase J on the transcriptome of Streptomyces venezuelae . Differential expression analysis comparing wild-type and RNase mutant strains at distinct developmental stages revealed significant changes in transcript abundance, particularly in pathways related to multicellular development, nutrient acquisition, and specialized metabolism. Both RNase mutants exhibited dysregulation of the BldD regulon, including altered expression of many cyclic-di-GMP-associated enzymes. We also observed precocious chloramphenicol production in these RNase mutants and found that in the RNase III mutant, this was associated with PhoP-mediated regulation. We further found that RNase III directly targeted members of the PhoP regulon, suggesting a link between RNA metabolism and a regulator that bridges primary and specialized metabolism. We connected RNase J function with translation through the observation that RNase J directly targets multiple ribosomal protein transcripts for degradation. These findings establish distinct but complementary roles for RNase III and RNase J in coordinating the gene expression dynamics critical for S. venezuelae development and specialized metabolism. IMPORTANCE RNA processing and metabolism are mediated by ribonucleases and are fundamental processes in all cells. In the morphologically complex and metabolically sophisticated Streptomyces bacteria, RNase III and RNase J influence both development and metabolism through poorly understood mechanisms. Here, we show that both ribonucleases are required for the proper expression of the BldD developmental pathway and contribute to the control of chloramphenicol production, with an interesting connection to phosphate regulation for RNase III. Additionally, we show that both RNases have the potential to impact translation through distinct mechanisms and can function cooperatively in degrading specific transcripts. This study advances our understanding of RNases in Streptomyces biology by providing insight into distinct contributions made by these enzymes and the intriguing interplay between them.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3