The ability of simian virus 40 large T antigen to immortalize primary mouse embryo fibroblasts cosegregates with its ability to bind to p53

Author:

Zhu J Y1,Abate M1,Rice P W1,Cole C N1

Affiliation:

1. Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844.

Abstract

The large T antigen encoded by simian virus 40 (SV40) plays essential roles in the infection of permissive cells, leading to production of progeny virions, and in the infection of nonpermissive cells, leading to malignant transformation. Primary mouse embryo fibroblasts (MEFs) are nonpermissive for SV40, and infection by wild-type SV40 leads to immortalization and transformation of a small percentage of infected cells. We examined the ability of an extensive set of mutants whose lesions affect SV40 large T antigen to immortalize MEFs. We found that immortalization activity was retained by all mutants whose lesions are located upstream of codon 346. This includes a mutant lacking amino acids 168 to 346. We previously showed (M. J. Tevethia, J. M. Pipas, T. Kierstead, and C. Cole, Virology 162:76-89, 1988) that sequences downstream of amino acid 626 are not required for immortalization of primary MEFs. Studies by Thompson et al. (D. L. Thompson, D. Kalderon, A. Smith, and M. Tevethia, Virology 178:15-34, 1990) indicate that all sequences upstream of residue 250, including the domain for binding of tumor suppressor protein Rb, are not required for transformation of MEFs. Together, these studies demonstrate that the immortalization activity of large T antigen for MEFs maps to sequences between 347 and 626. Several mutants with lesions between 347 and 626 retained the ability to immortalize at nearly the wild-type frequency, while others, with small insertions at amino acid 409 or 424 or a deletion of residues 587 to 589, failed to immortalize. The abilities of mutant T antigens to form a complex with tumor suppressor protein p53 were examined. We found that all mutants able to immortalize retained the ability to complex with p53, while all mutants which lost the ability to immortalize were no longer able to bind p53. This suggests that inactivation of the growth-suppressive properties of p53 is essential for immortalization of MEFs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3