M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice

Author:

Vlk Alexandra M.1,Prantner Daniel1,Shirey Kari Ann1,Perkins Darren J.12,Buzza Marguerite S.34,Thumbigere-Math Vivek5,Keegan Achsah D.14,Vogel Stefanie N.12

Affiliation:

1. Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, Maryland, USA

2. University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center , Baltimore, Maryland, USA

3. Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland, USA

4. Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine , Baltimore, Maryland, USA

5. Division of Periodontics, University of Maryland School of Dentistry , Baltimore, Maryland, USA

Abstract

ABSTRACT Toll-like receptor 4 (TLR4) is an innate immune receptor responsive to lipopolysaccharide (LPS). Single nucleotide polymorphisms (SNPs) in human TLR4 that encode an A896G transition at SNP rs4986790 (D299G) and a C1196T transition at SNP rs4986791 (T399I) render individuals hyporesponsive to LPS. In humans, these SNPs are also associated with increased susceptibility to inflammatory bowel diseases (IBDs). Using knock-in mice engineered to express the murine homologs of these human TLR4 mutations (“TLR4-SNP” mice), we have shown that TLR4-SNP mice develop significantly more severe colitis induced by dextran sodium sulfate (DSS) than wild-type (WT) mice, similar to IBD in humans expressing these SNPs. Previous studies have provided indirect evidence for “tissue repair” M2 macrophages (Mφ) in the resolution of colitis. Signaling through the IL-4/IL-13 receptor, IL-4Rα, and the transcription factor, peroxisome proliferator-activated receptor (PPARγ), have been shown to be required for induction of M2a Mφ, and our data provide direct evidence for the involvement of both in the repair of DSS-induced colonic damage. In response to DSS, colons of TLR4-SNP mice produced reduced levels of M2a Mφ marker mRNA and protein, including PPARγ, and therapeutic administration of the PPARγ agonist ligand, rosiglitazone, resolved colitis in TLR4-SNP mice, and increased expression of the M2a protein, Ym1. Together, these data indicate that the failure of TLR4-SNP mice to resolve DSS-induced colitis may be secondary to their failure to induce “tissue repair” M2a Mφ. Importance Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, impacts millions of individuals worldwide and severely impairs the quality of life for patients. Dysregulation of innate immune signaling pathways reduces barrier function and exacerbates disease progression. Macrophage (Mφ) signaling pathways are potential targets for IBD therapies. While multiple treatments are available for IBD, (i) not all patients respond, (ii) responses may diminish over time, and (iii) treatments often have undesirable side effects. Genetic studies have shown that the inheritance of two co-segregating SNPs expressed in the innate immune receptor, TLR4, is associated with human IBD. Mice expressing homologous SNPs (“TLR4-SNP” mice) exhibited more severe colitis than WT mice in a DSS-induced colonic inflammation/repair model. We identified a critical role for M2a “tissue repair” Mφ in the resolution of colitis. Our findings provide insight into potential development of novel therapies targeting Mφ signaling pathways that aim to alleviate the debilitating symptoms experienced by individuals with IBD.

Funder

American Association of Immunologists

HHS | National Institutes of Health

UMD | School of Dentistry, University of Maryland

UMD | Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3