Retinoic acid represses Oct-3/4 gene expression through several retinoic acid-responsive elements located in the promoter-enhancer region.

Author:

Pikarsky E,Sharir H,Ben-Shushan E,Bergman Y

Abstract

The Oct-3/4 gene product, which belongs to the POU family of transcription factors, is a good candidate for regulating initial differentiation decisions. It is expressed in the earliest stages of embryogenesis and repressed in subsequent stages. Retinoic acid (RA)-induced differentiation of embryonal carcinoma (EC) cells is accompanied by decreased expression of the Oct-3/4 gene. Previous findings show that sequences in the Oct-3/4 enhancer region (designated RARE1) are targets for RA-mediated repression (H. Okazawa, K. Okamoto, F. Ishino, T. Ishino-Kaneko, S. Takeda, Y. Toyoda, M. Muramatsu, and H. Hamada, EMBO J. 10:2997-3005, 1991). Our present results demonstrate conclusively that the TATA-less Oct-3/4 promoter is also a target for RA-induced repression. We identified a novel cis element in the Oct-3/4 promoter harbors a putative Sp1 binding site and a RA-responsive element (designated RAREoct), which are juxtaposed to one another. Protein binding to the Sp1 site is independent of protein binding to the RAREoct sequence. Unlike the RARE1 situated in the Oct-3/4 enhancer which does not contain a typical RAR recognition site, the RAREoct identified in this study consists of three directly repeated motifs that exhibit extensive homology to RARE sequences located in RA-responsive genes. Moreover, the RAREoct shows different DNA-binding characteristics and DNase I footprint patterns with nuclear proteins isolated from undifferentiated versus RA-differentiated EC cells. This suggests that the RAREoct element binds different nuclear proteins in RA-treated and untreated EC cells which most probably belong to the RA receptor, retinoid X receptor, or orphan receptor families of transcription factors. Using site-directed mutagenesis, we show that the RAREoct contributes to the transcriptional activation of Oct-3/4 promoter in P19 cells and, most interestingly, mediates the RA-induced repression in RA-differentiated EC cells. Thus, the RAREoct element could be one of the points of integration of several signalling pathways influencing Oct-3/4 expression. In accordance with the suggestion that suppression of Oct-3/4 expression is a crucial step during embryogenesis, the Oct-3/4 upstream region contains multiple targets for RA-induced repression, probably to ensure accurate and prompt repression of Oct-3/4 expression. It is possible that these repressors are differentially used at specific stages of development in response to various signals.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3