Glucose-induced transcription of the insulin gene is mediated by factors required for beta-cell-type-specific expression.

Author:

Sharma A,Stein R

Abstract

The insulin gene is expressed exclusively in pancreatic islet beta cells. The principal regulator of insulin gene transcription in the islet is the concentration of circulating glucose. Previous studies have demonstrated that transcription is regulated by the binding of trans-acting factors to specific cis-acting sequences within the 5'-flanking region of the insulin gene. To identify the cis-acting control elements within the rat insulin II gene that are responsible for regulating glucose-stimulated expression in the beta cell, we analyzed the effect of glucose on the in vivo expression of a series of transfected 5'-flanking deletion mutant constructs. We demonstrate that glucose-induced transcription of the rat insulin II gene is mediated by sequences located between -126 and -91 bp relative to the transcription start site. This region contains two cis-acting elements that are essential for directing pancreatic beta-cell-type-specific expression of the rat insulin II gene, the insulin control element (ICE; -100 to -91 bp) and RIPE3b1 (-115 to -107 bp). The gel mobility shift assay was used to determine whether the formation of the ICE- and RIPE3b1-specific factor-DNA element complexes were affected in glucose-treated beta-cell extracts. We found that RIPE3b1 binding activity was selectively induced by about eightfold. In contrast, binding to other insulin cis-acting element sequences like the ICE and RIPE3a2 (-108 to -99 bp) were unaffected by these conditions. The RIPE3b1 binding complex was shown to be distinct from the glucose-inducible factor that binds to an element located between -227 to -206 bp of the human and rat insulin I genes (D. Melloul, Y. Ben-Neriah, and E. Cerasi, Proc. Natl. Acad. Sci. USA 90:3865-3869, 1993). We have also shown that mannose, a sugar that can be metabolized by the beta cell, mimics the effects of glucose in the in vivo transfection assays and the in vitro RIPE3b1 binding assays. These results suggested that the RIPE3b1 transcription factor is a primary regulator of glucose-mediated transcription of the insulin gene. However, we found that mutations in either the ICE or the RIPE3b1 element reduced glucose-responsive expression from transfected 5'-flanking rat insulin II gene constructs. We therefore conclude that glucose-regulated transcription of the insulin gene is mediated by cis-acting elements required for beta-cell-type-specific expression.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3