Identification of Deoxynivalenol- and Nivalenol-Producing Chemotypes of Gibberella zeae by Using PCR

Author:

Lee Theresa1,Oh Dae-Woong1,Kim Hye-Seon1,Lee Jungkwan1,Kim Yong-Ho2,Yun Sung-Hwan2,Lee Yin-Won1

Affiliation:

1. School of Agricultural Biotechnology, Seoul National University, Suwon 441-744,1 and

2. Division of Life Sciences, Soonchunhyang University, Asan 336-745,2 Korea

Abstract

ABSTRACT Gibberella zeae , a major cause of cereal scab, may be divided into two chemotypes based on production of the trichothecenes deoxynivalenol (DON) and nivalenol (NIV). We cloned and sequenced the gene cluster for trichothecene biosynthesis from each chemotype. G. zeae H-11 is a DON producer isolated from corn, and G. zeae 88-1 is a NIV producer from barley. We sequenced a 23-kb gene cluster from H-11 and a 26-kb cluster from 88-1, along with the unlinked Tri101 genes. Each gene cluster contained 10 Tri gene homologues in the same order and transcriptional directions as those of Fusarium sporotrichioides . Between H-11 and 88-1 all of the Tri homologues except Tri7 were conserved, with identities ranging from 88 to 98% and 82 to 99% at the nucleotide and amino acid levels, respectively. The Tri7 sequences were only 80% identical at the nucleotide level. We aligned the Tri7 genes and found that the Tri7 open reading frame of H-11 carried several mutations and an insertion containing 10 copies of an 11-bp tandem repeat. The Tri7 gene from 88-1 carried neither the repeat nor the mutations. We assayed 100 G. zeae isolates of both chemotypes by PCR amplification with a primer pair derived from the Tri7 gene and could differentiate the chemotypes by polyacrylamide gel electrophoresis. The PCR-based method developed in this study should provide a simple and reliable diagnostic tool for differentiating the two chemotypes of G. zeae .

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3