Cloning and sequencing of a bile acid-inducible operon from Eubacterium sp. strain VPI 12708

Author:

Mallonee D H1,White W B1,Hylemon P B1

Affiliation:

1. Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0678.

Abstract

Two bile acid-inducible polypeptides from Eubacterium sp. strain VPI 12708 with molecular weights of 27,000 and approximately 45,000 have previously been shown to be encoded by genes residing on a 2.9-kb EcoRI fragment. We now report the cloning and sequencing of three additional overlapping DNA fragments upstream from this EcoRI fragment. Together, these four fragments contain a large segment of a bile acid-inducible operon which encodes the 27,000- and 45,000-Mr (now shown to be 47,500-Mr) polypeptides and open reading frames potentially coding for four additional polypeptides with molecular weights of 59,500, 58,000, 19,500, and 9,000 to 11,500. A bile acid-inducible polypeptide with an apparent Mr of 23,500, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was purified to homogeneity, and the N-terminal amino acid sequence that was obtained matched the sequence deduced from the open reading frame coding for the 19,500-Mr polypeptide. A short DNA segment containing the 3' downstream end of the gene coding for the 47,500-Mr polypeptide was not successfully cloned but was directly sequenced from DNA fragments synthesized by polymerase chain reaction. The mRNA initiation site for the bile acid-inducible operon was shown by primer extension to be immediately upstream from the gene encoding the 58,000-Mr polypeptide. A potential promoter region upstream from the mRNA initiation site displayed significant homology with the promoter regions of previously identified bile acid-inducible genes from Eubacterium sp. strain VPI 12708. We hypothesize that this bile acid-inducible operon codes for most of the enzymes involved in the bile acid 7 alpha-dehydroxylation pathway in this bacterium.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference28 articles.

1. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1987. Current protocols in molecular biology. John Wiley & Sons Inc. New York.

2. A rapid alkaline extraction procedure for screening recombinant plasmid DNA;Birnboim H. C.;Nucleic Acids Res.,1979

3. Biosynthesis of a novel bile acid nucleotide and mechanism of 7a-dehydroxylation by an intestinal Eubacterium species;Coleman J. P.;J. Biol. Chem.,1987

4. Molecular cloning of bile acid 7-dehydroxylase from Eubacterium sp. strain VPI 12708;Coleman J. P.;J. Bacteriol.,1987

5. Nucleotide sequence and regulation of a gene involved in bile acid 7ot-dehydroxylation in Eubacterium sp. strain VPI 12708;Coleman J. P.;J. Bacteriol.,1988

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3