The Hydrophilic Amino-Terminal Arm of Reovirus Core Shell Protein λ1 Is Dispensable for Particle Assembly

Author:

Kim Jonghwa12,Zhang Xing3,Centonze Victoria E.4,Bowman Valorie D.3,Noble Simon2,Baker Timothy S.4,Nibert Max L.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115

2. Department of Biochemistry

3. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907

4. Integrated Microscopy Resource, University of Wisconsin—Madison, Madison, Wisconsin 53706

Abstract

ABSTRACT The reovirus core particle is a molecular machine that mediates synthesis, capping, and export of the viral plus strand RNA transcripts. Its assembly and structure-function relationships remain to be well understood. Following the lead of previous studies with other Reoviridae family members, most notably orbiviruses and rotaviruses, we used recombinant baculoviruses to coexpress reovirus core proteins λ1, λ2, and σ2 in insect cells. The resulting core-like particles (CLPs) were purified and characterized. They were found to be similar to cores with regard to their sizes, morphologies, and protein compositions. Like cores, they could also be coated in vitro with the two major outer-capsid proteins, μ1 and σ3, to produce virion-like particles. Coexpression of core shell protein λ1 and core nodule protein σ2 was sufficient to yield CLPs that could withstand purification, whereas expression of λ1 alone was not, indicating a required role for σ2 as a previous study also suggested. In addition, CLPs that lacked λ2 (formed from λ1 and σ2 only) could not be coated with μ1 and σ3, indicating a required role for λ2 in the assembly of these outer-capsid proteins into particles. To extend the use of this system for understanding the core and its assembly, we addressed the hypothesis that the hydrophilic amino-terminal region of λ1, which adopts an extended arm-like conformation around each threefold axis in the reovirus core crystal structure, plays an important role in assembling the core shell. Using a series of λ1 deletion mutants, we showed that the amino-terminal 230 residues of λ1, including its zinc finger, are dispensable for CLP assembly. Residues in the 231-to-259 region of λ1, however, were required. The core crystal structure suggests that residues in the 231-to-259 region are necessary because they affect the interaction of λ1 with the threefold and/or fivefold copies of σ2. An effective system for studies of reovirus core structure, assembly, and functions is hereby established.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3