Potentiation by sulfide of hydrogen peroxide-induced killing of Escherichia coli

Author:

Berglin E H,Carlsson J

Abstract

L-Cysteine potentiates 100-fold the hydrogen peroxide-induced killing of a growing culture of Escherichia coli K-12 (Berglin et al., J. Bacteriol. 152:81-88). In the present study it is shown that hydrogen sulfide is formed from L-cysteine and that sodium sulfide could substitute for L-cysteine in the potentiation of hydrogen peroxide-induced killing of E. coli K-12. Addition of an amino acid, L-leucine, L-valine, or L-alanine, to an L-cysteine-containing medium with a growing culture of E. coli K-12 inhibited hydrogen sulfide formation and the potentiation of hydrogen peroxide-induced killing. These amino acids did not inhibit hydrogen sulfide formation from L-cysteine by a cell extract, and they did not inhibit the potentiation by sulfide of hydrogen peroxide-induced killing. This indicated that the amino acids protected the culture from L-cysteine-potentiated, hydrogen peroxide-induced killing by inhibiting the transport of L-cysteine into the cell. The potentiation by sodium sulfide of hydrogen peroxide-induced killing was abolished by the metal ion chelator 2,2'-bipyridyl. This indicated that metal ions, in addition to sulfide, were involved in the killing. Toxic effects of hydrogen peroxide are often presumed to be mediated by hydroxyl radicals formed in iron-catalyzed reactions. It was demonstrated that iron sulfide was more efficient than ferrous iron in catalyzing the formation of hydroxyl radicals from hydrogen peroxide. It was suggested that hydrogen sulfide formed in polymicrobial infections may play an important role in the host defense by potentiating the antimicrobial effect of hydrogen peroxide produced by phagocytic cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference42 articles.

1. Quantitative studies of the avidity of naturally occurring substances for trace metals. 2. Amino-acids having three ionizing groups;Albert A.;Biochem. J.,1952

2. Anraku Y. 1978. Active transport of amino acids p. 171-219. In B. P. Rosen (ed.) Bacterial transport. Marcel Dekker Inc. New York.

3. The respiratory burst of phagocytes;Babior B. M.;J. Clin. Invest.,1984

4. Pedigrees of some mutant strains of Escherichia coli K-12;Bachmann B. J.;Bacteriol. Rev.,1972

5. Transport of cystine and cysteine in mammalian cells;Bannai S.;Biochim. Biophys. Acta,1984

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3