Screening of Genes Involved in Isooctane Tolerance in Saccharomyces cerevisiae by Using mRNA Differential Display

Author:

Miura Shigenori1,Zou Wen1,Ueda Mitsuyoshi1,Tanaka Atsuo1

Affiliation:

1. Laboratory of Applied Biological Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

Abstract

ABSTRACT A Saccharomyces cerevisiae strain, KK-211, isolated by the long-term bioprocess of stereoselective reduction in isooctane, showed extremely high tolerance to the solvent, which is toxic to yeast cells, but, in comparison with its wild-type parent, DY-1, showed low tolerance to hydrophilic organic solvents, such as dimethyl sulfoxide and ethanol. In order to detect the isooctane tolerance-associated genes, mRNA differential display (DD) was employed using mRNAs isolated from strains DY-1 and KK-211 cultivated without isooctane, and from strain KK-211 cultivated with isooctane. Thirty genes were identified as being differentially expressed in these three types of cells and were classified into three groups according to their expression patterns. These patterns were further confirmed and quantified by Northern blot analysis. On the DD fingerprints, the expression of 14 genes, including MUQ1 , PRY2 , HAC1 , AGT1 , GAC1 , and ICT1 ( YLR099c ) was induced, while the expression of the remaining 16 genes, including JEN1 , PRY1 , PRY3 , and KRE1 , was decreased, in strain KK-211 cultivated with isooctane. The genes represented by HAC1 , PRY1 , and ICT1 have been reported to be associated with cell stress, and AGT1 and GAC1 have been reported to be involved in the uptake of trehalose and the production of glycogen, respectively. MUQ1 and KRE1 , encoding proteins associated with cell surface maintenance, were also detected. Based on these results, we concluded that alteration of expression levels of multiple genes, not of a single gene, might be the critical determinant for isooctane tolerance in strain KK-211.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3