Conservation of a Masked Nuclear Export Activity of La Proteins and Its Effects on tRNA Maturation

Author:

Bayfield Mark A.1,Kaiser Trish E.1,Intine Robert V.1,Maraia Richard J.1

Affiliation:

1. Intramural Research Program, National Institute of Child Health and Human Development, U.S. National Institutes of Health, Bethesda, Maryland

Abstract

ABSTRACT La is an RNA-processing-associated phosphoprotein so highly conserved that the human La protein (hLa) can replace the tRNA-processing function of the fission yeast La protein (Sla1p) in vivo. La proteins contain multiple trafficking elements that support interactions with RNAs in different subcellular locations. Prior data indicate that deletion of a nuclear retention element (NRE) causes nuclear export of La and dysfunctional processing of associated pre-tRNAs that are spliced but 5′ and 3′ unprocessed, with an accompanying decrease in tRNA-mediated suppression, in fission yeast. To further pursue these observations, we first identified conserved residues in the NREs of hLa and Sla1p that when substituted mimic the NRE deletion phenotype. NRE-defective La proteins then deleted of other motifs indicated that RNA recognition motif 1 (RRM1) is required for nuclear export. Mutations of conserved RRM1 residues restored nuclear accumulation of NRE-defective La proteins. Some RRM1 mutations restored nuclear accumulation, prevented disordered pre-tRNA processing, and restored suppression, indicating that the tRNA-related activity of RRM1 and its nuclear export activity could be functionally separated. When mapped onto an hLa structure, the export-sensitive residues comprised surfaces distinct from the RNA-binding surface of RRM1. The data indicate that the NRE has been conserved to mask or functionally override an equally conserved nuclear export activity of RRM1. The data suggest that conserved elements mediate nuclear retention, nuclear export, and RNA-binding activities of the multifunctional La protein and that their interrelationship contributes to the ability of La to engage its different classes of RNA ligands in different cellular locations.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3