Different Modes of Human Papillomavirus DNA Replication during Maintenance

Author:

Hoffmann Ralf1,Hirt Bernhard2,Bechtold Viviane1,Beard Peter2,Raj Kenneth1

Affiliation:

1. National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom

2. Swiss Institute for Experimental Cancer Research, 1066-Epalinges, Switzerland

Abstract

ABSTRACT Human papillomavirus (HPV) begins its life cycle by infecting the basal cells of the epithelium. Within these proliferating cells, the viral genomes are replicated, maintained, and passed on to the daughter cells. Using HPV episome-containing cell lines that were derived from naturally infected cervical tissues, we investigated the mode by which the viral DNAs replicate in these cells. We observed that, whereas HPV16 DNA replicated in an ordered once-per-S-phase manner in W12 cells, HPV31 DNA replicated via a random-choice mechanism in CIN612 cells. However, when HPV16 and HPV31 DNAs were separately introduced into an alternate keratinocyte cell line NIKS, they both replicated randomly. This indicates that HPV DNA is inherently capable of replicating by either random-choice or once-per-S-phase mechanisms and that the mode of HPV DNA replication is dependent on the cells that harbor the viral episome. High expression of the viral replication protein E1 in W12 cells converted HPV16 DNA replication to random-choice replication and, as such, it appears that the mode of HPV DNA replication in proliferating cells is dependent on the presence or the increased level of this protein in the host cell. The implications of these observations on maintenance, latency, and persistence are discussed.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3