Influence on Mitochondria and Cytotoxicity of Different Antibiotics Administered in High Concentrations on Primary Human Osteoblasts and Cell Lines

Author:

Duewelhenke N.1,Krut O.2,Eysel P.1

Affiliation:

1. Department of Orthopedic Surgery, Cologne University Hospitals, Cologne, Germany

2. Institute for Medical Microbiology, Immunology, and Hygiene, Cologne University Hospitals, Cologne, Germany

Abstract

ABSTRACT Osteomyelitis, osteitis, spondylodiscitis, septic arthritis, and prosthetic joint infections still represent the worst complications of orthopedic surgery and traumatology. Successful treatment requires, besides surgical débridement, long-term systemic and high-concentration local antibiotic therapy, with possible local antibiotic concentrations of 100 μg/ml and more. In this study, we investigated the effect of 20 different antibiotics on primary human osteoblasts (PHO), the osteosarcoma cell line MG63, and the epithelial cell line HeLa. High concentrations of fluoroquinolones, macrolides, clindamycin, chloramphenicol, rifampin, tetracycline, and linezolid during 48 h of incubation inhibited proliferation and metabolic activity, whereas aminoglycosides and inhibitors of bacterial cell wall synthesis did not. Twenty percent inhibitory concentrations for proliferation of PHO were determined as 20 to 40 μg/ml for macrolides, clindamycin, and rifampin, 60 to 80 μg/ml for chloramphenicol, tetracylin, and fluoroquinolones, and 240 μg/ml for linezolid. The proliferation of the cell lines was always less inhibited. We established the measurement of extracellular lactate concentration as an indicator of glycolysis using inhibitors of the respiratory chain (antimycin A, rotenone, and sodium azide) and glycolysis (iodoacetic acid) as reference compounds, whereas inhibition of the respiratory chain increased and inhibition of glycolysis decreased lactate production. The measurement of extracellular lactate concentration revealed that fluoroquinolones, macrolides, clindamycin, rifampin, tetracycline, and especially chloramphenicol and linezolid impaired mitochondrial energetics in high concentrations. This explains partly the observed inhibition of metabolic activity and proliferation in our experiments. Because of differences in the energy metabolism, PHO provided a more sensitive model for orthopedic antibiotic usage than stable cell lines.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3