Influence of disruption of the recA gene on genetic instability and genome rearrangement in Streptomyces lividans

Author:

Volff J N1,Altenbuchner J1

Affiliation:

1. Institut für Industrielle Genetik, Universität Stuttgart, Germany.

Abstract

Streptomyces lividans TK23 gives rise to chloramphenicol-sensitive (Cml(s)) mutants at a frequency of about 0.5%. This is due to the frequent occurrence of very large chromosomal deletions removing the corresponding chloramphenicol resistance gene. A mutant in which the recA gene has been disrupted (S. lividans FrecD3 [G. Muth, D. Frese, A. Kleber, and W. Wohlleben, personal communication]) segregated about 70 times more chloramphenicol-sensitive mutants than the parental strain. An enhancement of the deletion frequency was responsible for this mutator phenotype. The amplifiable locus AUD1 has a duplicated structure in some S. lividans strains and is frequently highly amplified in some mutants generated by genetic instability. The chromosomal AUD1 is not amplified in strain TK23 because of the lack of one duplication. Nevertheless, AUD1-derived amplifiable units presenting the typical duplicated organization amplified very well in TK23 when carried on a plasmid. No amplification of these units was observed in the recA mutant. The ability to amplify was restored when the wild-type recA gene was introduced into the plasmid carrying the amplifiable unit. These results suggest that the RecA protein plays a role in reducing the level of genetic instability and chromosomal deletions and show that the recA gene is necessary to achieve high-copy-number amplification of AUD1.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3