Identification by In Vivo Genomic Footprinting of a Transcriptional Switch Containing NF-κB and Sp1 That Regulates the IκBα Promoter

Author:

Algarté Michèle1,Kwon Hakju1,Génin Pierre1,Hiscott John1

Affiliation:

1. Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, and Departments of Microbiology & Immunology, Medicine, and Oncology, McGill University, Montreal, Canada H3T 1E2

Abstract

ABSTRACT In unstimulated cells, NF-κB transcription factors are retained in the cytoplasm by inhibitory IκB proteins. Upon stimulation by multiple inducers including cytokines or viruses, IκBα is rapidly phosphorylated and degraded, resulting in the release of NF-κB and the subsequent increase in NF-κB-regulated gene expression. IκBα gene expression is also regulated by an NF-κB autoregulatory mechanism, via NF-κB binding sites in the IκBα promoter. In previous studies, tetracycline-inducible expression of transdominant repressors of IκBα (TD-IκBα) progressively decreased endogenous IκBα protein levels. In the present study, we demonstrate that expression of TD-IκBα blocked phorbol myristate acetate-phytohemagglutinin or tumor necrosis factor alpha-induced IκBα gene transcription and abolished NF-κB DNA binding activity, due to the continued cytoplasmic sequestration of RelA(p65) by TD-IκBα. In vivo genomic footprinting revealed stimulus-responsive protein-DNA binding not only to the −63 to −53 κB1 site but also to the adjacent −44 to −36 Sp1 site of the IκBα promoter. In vivo protection of both sites was inhibited by tetracycline-inducible TD-IκBα expression. Prolonged NF-κB binding and a temporal switch in the composition of NF-κB complexes bound to the −63 to −53 κB1 site of the IκBα promoter were also observed; with time after induction, decreased levels of transcriptionally active p50-p65 and increased p50–c-Rel heterodimers were detected at the κB1 site. Mutation of either the κB1 site or the Sp1 site abolished transcription factor binding to the respective sites and the inducibility of the IκBα promoter in transient transfection studies. These observations provide the first in vivo characterization of a promoter proximal transcriptional switch involving NF-κB and Sp1 that is essential for autoregulation of the IκBα promoter.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3