Multilocus Microsatellite Typing System for Penicillium marneffei Reveals Spatially Structured Populations

Author:

Fisher Matthew C.1,Aanensen David1,de Hoog Sybren2,Vanittanakom Nongnuch3

Affiliation:

1. Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom

2. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands

3. Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

Abstract

ABSTRACT For eukaryotic pathogens that have low levels of genetic variation, multilocus microsatellite typing (MLMT) offers an accurate and reproducible method of characterizing genetic diversity. Here, we describe the application of an MLMT system to the emerging pathogenic fungus Penicillium marneffei . Isolates used for this study were those held in the culture collections of the Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands, and the Chiang Mai University Department of Microbiology, Chang Mai, Thailand. High genetic diversity and extensive spatial structure were observed among clinical isolates, with the geographical area of origin for each isolate strongly correlating with the occurrence of two deeply divided clades. Within each clade, multilocus linkage associations were highly significant and could be explained by genetically differentiated populations or by an exclusively clonal reproductive mode, or both. Our results show that southeast Asian penicilliosis is caused by a fungus with a complex population genetic structure. Furthermore, this MLMT system generates digital data that can be easily queried against a centrally held database via the internet ( http://pmarneffei.multilocus.net/ ); this provides a powerful epidemiological tool for analyzing the underlying parameters that are responsible for the emergence of P. marneffei in human immunodeficiency virus-positive populations.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3