MpaR-driven expression of an orphan terminal oxidase subunit supports Pseudomonas aeruginosa biofilm respiration and development during cyanogenesis

Author:

Smiley Marina K.1,Sekaran Doran C.1,Forouhar Farhad2,Wolin Erica1,Jovanovic Marko1,Price-Whelan Alexa1,Dietrich Lars E. P.1ORCID

Affiliation:

1. Department of Biological Sciences, Columbia University, New York, New York, USA

2. Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA

Abstract

ABSTRACT Pseudomonas aeruginosa is a common, biofilm-forming pathogen that exhibits complex pathways of redox metabolism. It produces four different types of terminal oxidases for aerobic respiration, and for one of these, the cbb 3 -type terminal oxidases, it has the capacity to produce at least 16 isoforms encoded by partially redundant operons. It also produces small-molecule virulence factors that interact with the respiratory chain, including the poison cyanide. Previous studies had indicated a role for cyanide in activating expression of an “orphan” terminal oxidase subunit gene called ccoN4 and that the product contributes to P. aeruginosa cyanide resistance, fitness in biofilms, and virulence, but the mechanisms underlying this process had not been elucidated. Here, we show that the regulatory protein MpaR, which is predicted to be a pyridoxal phosphate-binding transcription factor and is encoded just upstream of ccoN4 , controls ccoN4 expression in response to endogenous cyanide. Paradoxically, we find that cyanide production is required to support CcoN4’s contribution to respiration in biofilms. We identify a palindromic motif required for cyanide- and MpaR-dependent expression of ccoN4 and co-expressed adjacent loci. We also characterize the regulatory logic of this region of the chromosome. Finally, we identify residues in the putative cofactor-binding pocket of MpaR, which are required for ccoN4 expression. Together, our findings illustrate a novel scenario in which the respiratory toxin cyanide acts as a signal to control gene expression in a bacterium that produces the compound endogenously. IMPORTANCE Cyanide is an inhibitor of heme-copper oxidases, which are required for aerobic respiration in all eukaryotes and many prokaryotes. This fast-acting poison can arise from diverse sources, but mechanisms by which bacteria sense it are poorly understood. We investigated the regulatory response to cyanide in the pathogenic bacterium Pseudomonas aeruginosa , which produces cyanide as a virulence factor. Although P. aeruginosa has the capacity to produce a cyanide-resistant oxidase, it relies primarily on heme-copper oxidases and even makes additional heme-copper oxidase proteins specifically under cyanide-producing conditions. We found that the protein MpaR controls expression of cyanide-inducible genes in P. aeruginosa and elucidated the molecular details of this regulation. MpaR contains a DNA-binding domain and a domain predicted to bind pyridoxal phosphate (vitamin B6), a compound that is known to react spontaneously with cyanide. These observations provide insight into the understudied phenomenon of cyanide-dependent regulation of gene expression in bacteria.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | National Institutes of Health

National Science Foundation

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3