Transcriptional regulation of soluble methane monooxygenase via enhancer-binding protein derived from Methylosinus sporium 5

Author:

Hwang Yunha1,Na Jeong-Geol2,Lee Seung Jae13ORCID

Affiliation:

1. Department of Chemistry, Jeonbuk National University , Jeonju, South Korea

2. Department of Chemical Engineering, Sogang University , Seoul, South Korea

3. Institute of Molecular Biology and Genetics, Jeonbuk National University , Jeonju, South Korea

Abstract

ABSTRACT Methane is a major greenhouse gas, and methanotrophs regulate the methane level in the carbon cycle. Soluble methane monooxygenase (sMMO) is expressed in various methanotroph genera, including Alphaproteobacteria and Gammaproteobacteria , and catalyzes the hydroxylation of methane to methanol. It has been proposed that MmoR regulates the expression of sMMO as an enhancer-binding protein under copper-limited conditions; however, details on this transcriptional regulation remain limited. Herein, we elucidate the transcriptional pathway of sMMO depending on copper ion concentration, which affects the interaction of MmoR and sigma factor. MmoR and sigma-54 (σ 54 ) from Methylosinus sporium 5 were successfully overexpressed in Escherichia coli and purified to investigate sMMO transcription in methanotrophs. The results indicated that σ 54 binds to a promoter positioned −24 (GG) and −12 (TGC) upstream between mmoG and mmoX1 . The binding affinity and selectivity are lower ( K d = 184.6 ± 6.2 nM) than those of MmoR. MmoR interacts with the upstream activator sequence (UAS) with a strong binding affinity ( K d = 12.5 ± 0.5 nM). Mutational studies demonstrated that MmoR has high selectivity to its binding partner (ACA-xx-TGT). Titration assays have demonstrated that MmoR does not coordinate with copper ions directly; however, its binding affinity to UAS decreases in a low-copper-containing medium. MmoR strongly interacts with adenosine triphosphate ( K d = 62.8 ± 0.5 nM) to generate RNA polymerase complex. This study demonstrated that the binding events of both MmoR and σ 54 that regulate transcription in M. sporium 5 depend on the copper ion concentration. IMPORTANCE This study provides biochemical evidence of transcriptional regulation of soluble methane monooxygenase (sMMO) in methanotrophs that control methane levels in ecological systems. Previous studies have proposed transcriptional regulation of MMOs, including sMMO and pMMO, while we provide further evidence to elucidate its mechanism using a purified enhancer-binding protein (MmoR) and transcription factor (σ 54 ). The characterization studies of σ 54 and MmoR identified the promoter binding sites and enhancer-binding sequences essential for sMMO expression. Our findings also demonstrate that MmoR functions as a trigger for sMMO expression due to the high specificity and selectivity for enhancer-binding sequences. The UV-visible spectrum of purified MmoR suggested an iron coordination like other GAF domain, and that ATP is essential for the initiation of enhancer elements. Binding assays indicated that these interactions are blocked by the copper ion. These results provide novel insights into gene regulation of methanotrophs.

Funder

National Research Foundation of Korea

Ministry of Education Korea

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3