The Xenobiotic Compound 1,4-Bis[2-(3,5-Dichloropyridyloxy)]Benzene Is an Agonist Ligand for the Nuclear Receptor CAR

Author:

Tzameli Iphigenia1,Pissios Pavlos1,Schuetz Erin G.2,Moore David D.1

Affiliation:

1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, 1 and

2. Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 381052

Abstract

ABSTRACT A wide range of xenobiotic compounds are metabolized by cytochrome P450 (CYP) enzymes, and the genes that encode these enzymes are often induced in the presence of such compounds. Here, we show that the nuclear receptor CAR can recognize response elements present in the promoters of xenobiotic-responsive CYP genes, as well as other novel sites. CAR has previously been shown to be an apparently constitutive transactivator, and this constitutive activity is inhibited by androstanes acting as inverse agonists. As expected, the ability of CAR to transactivate the CYP promoter elements is blocked by the inhibitory inverse agonists. However, CAR transactivation is increased in the presence of 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), the most potent known member of the phenobarbital-like class of CYP-inducing agents. Three independent lines of evidence demonstrate that TCPOBOP is an agonist ligand for CAR. The first is that TCPOBOP acts in a dose-dependent manner as a direct agonist to compete with the inhibitory effect of the inverse agonists. The second is that TCPOBOP acts directly to stimulate coactivator interaction with the CAR ligand binding domain, both in vitro and in vivo. The third is that mutations designed to block ligand binding block not only the inhibitory effect of the androstanes but also the stimulatory effect of TCPOBOP. Importantly, these mutations do not block the apparently constitutive transactivation by CAR, suggesting that this activity is truly ligand independent. Both its ability to target CYP genes and its activation by TCPOBOP demonstrate that CAR is a novel xenobiotic receptor that may contribute to the metabolic response to such compounds.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3