Amino Acid Changes in the Influenza A Virus PA Protein That Attenuate Avian H5N1 Viruses in Mammals

Author:

Fan Shufang1,Hatta Masato1,Kim Jin Hyun1,Le Mai Quynh2,Neumann Gabriele1,Kawaoka Yoshihiro134

Affiliation:

1. Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA

2. National Institute of Hygiene and Epidemiology, Hanoi, Vietnam

3. Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan

4. Infection-Induced Host Responses Project, Exploratory Research for Advanced Technology, Saitama, Japan

Abstract

ABSTRACT The influenza viral polymerase complex affects host tropism and pathogenicity. In particular, several amino acids in the PB2 polymerase subunit are essential for the efficient replication of avian influenza viruses in mammals. The PA polymerase subunit also contributes to host range and pathogenicity. Here, we report that the PA proteins of several highly pathogenic avian H5N1 viruses have attenuating properties in mammalian cells and that the attenuating phenotype is conferred by strain-specific amino acid changes. Specifically, lysine at position 185 of A/duck/Vietnam/TY165/2010 (TY165; H5N1) PA induced strongly attenuating effects in vitro and in vivo . More importantly, the introduction of the arginine residue commonly found at this position in PA significantly increased the viral polymerase activity of TY165 in mammalian cells and its virulence and pathogenicity in mice. These findings demonstrate that the PA protein plays an important role in influenza virulence and pathogenicity. IMPORTANCE Highly pathogenic influenza viruses of the H5N1 subtype cause severe respiratory infections in humans, which have resulted in death in nearly two-thirds of the patients with laboratory-confirmed cases. We found that the viral PA polymerase subunit of several H5N1 viruses possesses amino acid changes that attenuate virus replication in mammalian cells (yet the H5N1 viruses possessing these mutations are highly pathogenic in mice). Specifically, we found that an arginine-to-lysine substitution at position 185 of an H5N1 virus PA protein significantly affected that virus's virulence and pathogenicity in mice. The PA protein thus plays a role in the pathogenicity of highly pathogenic H5N1 influenza viruses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3