Berberine-INF55 (5-Nitro-2-Phenylindole) Hybrid Antimicrobials: Effects of Varying the Relative Orientation of the Berberine and INF55 Components

Author:

Tomkiewicz Danuta1,Casadei Gabriele1,Larkins-Ford Jonah2,Moy Terence I.2,Garner James3,Bremner John B.3,Ausubel Frederick M.2,Lewis Kim1,Kelso Michael J.3

Affiliation:

1. Department of Biology and Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts 02115

2. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114

3. School of Chemistry, University of Wollongong, NSW 2522, Australia

Abstract

ABSTRACT Hybrid antimicrobials containing an antibacterial linked to a multidrug resistance (MDR) pump inhibitor make up a promising new class of agents for countering efflux-mediated bacterial drug resistance. This study explores the effects of varying the relative orientation of the antibacterial and efflux pump inhibitor components in three isomeric hybrids (SS14, SS14-M, and SS14-P) which link the antibacterial alkaloid and known substrate for the NorA MDR pump berberine to different positions on INF55 (5-nitro-2-phenylindole), an inhibitor of NorA. The MICs for all three hybrids against wild-type, NorA-knockout, and NorA-overexpressing Staphylococcus aureus cells were found to be similar (9.4 to 40.2 μM), indicating that these compounds are not effectively effluxed by NorA. The three hybrids were also found to have similar curing effects in a Caenorhabditis elegans live infection model. Each hybrid was shown to accumulate in S. aureus cells to a greater extent than either berberine or berberine in the presence of INF55, and the uptake kinetics of SS14 were found to differ from those of SS14-M and SS14-P. The effects on the uptake and efflux of the NorA substrate ethidium bromide into S. aureus cells in the presence or absence of the hybrids were used to confirm MDR inhibition by the hybrids. MDR-inhibitory activity was confirmed for SS14-M and SS14-P but not for SS14. Molecular dynamics simulations revealed that SS14 prefers to adopt a conformation that is not prevalent in either SS14-M or SS14-P, which may explain why some properties of SS14 diverge from those of its two isomers. In summary, subtle repositioning of the pump-blocking INF55 moiety in berberine-INF55 hybrids was found to have a minimal effect on their antibacterial activities but to significantly alter their effects on MDR pumps.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3