Adeno-associated virus DNA replication in vitro: activation by a maltose binding protein/Rep 68 fusion protein

Author:

Ward P1,Urcelay E1,Kotin R1,Safer B1,Berns K I1

Affiliation:

1. Department of Microbiology, Hearst Microbiology Research Center, Cornell University Medical College, New York, New York 10021.

Abstract

The adeno-associated virus (AAV) nonstructural protein Rep 68 is required for viral DNA replication. An in vitro assay has been developed in which addition of Rep 68 to an extract from uninfected HeLa cells supports AAV DNA replication. In this paper, we report characterization of the replication process when a fusion of the maltose binding protein and Rep 68, expressed in Escherichia coli, was used in the assay. Replication was observed when the template was either linear double-stranded AAV DNA or a plasmid construct containing intact AAV DNA. When the recombinant plasmid construct was used as the template, there was replication of pBR322 DNA as well as the AAV DNA; however, linear pBR322 DNA was not replicated. When the plasmid construct was the template, replication appeared to initiate on the intact plasmid and led to separation of the AAV sequences from those of the vector, a process which has been termed rescue. There was no evidence that replication could initiate on the products of rescue. Rep 68 can make a site-specific nick 124 nucleotides from the 3' end of AAV DNA; the site of the nick has been called the terminal resolution site. Our data are most consistent with initiation occurring at the terminal resolution site and proceeding toward the 3' terminus. When the template was the plasmid construct, either elongation continued past the junction into pBR322 sequences or the newly synthesized sequence hairpinned, switched template strands, and replicated the AAV DNA. Replication was linear for 4 h, during which time 70% of the maximal synthesis took place. An additional finding was that the Rep fusion could resolve AAV dimer length duplex intermediates into monomer duplexes without DNA synthesis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3